
IB Methods Sturm-Liouville

Sturm-Liouville Theory

1 Self-adjoint Matrices

A real self-adjoint matrix is just another name for a symmetric matrix, i.e. satisfies M> = M ,
because M> is also called the adjoint of M . This terminology is useful when we generalise
matrices to linear operators.

Solving a Linear Equation

Suppose we want to solve Mx = b, where x,b ∈ Cn and M = M> is an n× n real self-adjoint
matrix. If we know how to diagonalise M , then this problem is quick!

First we will recall the geometric meaning of self-adjoint matrices, via the following theorem.

Theorem 1.1. A self-adjoint matrix has an orthonormal basis of eigenvectors.

The picture you should have in your head is a scaling of a cube into a cuboid in a rotated
(or reflected) basis. The basis consists of eigenvectors, and the eigenvalues represent the stretch
factor in each of the directions.

Since M can be diagonalised, we can write it in the form

M = PDP−1 = PDP>,

with

D =

λ1 . . .

λn

 , P =
[
v1 · · · vn

]
,

where v1, . . . ,vn are the orthonormal eigenvectors with corresponding eigenvalues λ1, . . . , λn.
How does this help us solve Mx = b? The key observation is that if we want to decompose b
into a linear combination of vi, by orthogonality we can project b onto the span of vi, giving
us

b =
n∑
i=1

〈b,vi〉vi.

b

〈b,v1〉v1

〈b,v2〉v2
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Now a solution to Mx = b can be found by inspection:

x =

n∑
i=1

1

λi
〈b,vi〉vi,

because M basically just scales x in each of the directions vi by λi to get b, so we undo this
by unscaling by a factor of 1/λi. We can verify this solution directly:

Mx = M
n∑
i=1

1

λi
〈b,vi〉vi

=
n∑
i=1

1

λi
〈b,vi〉Mvi linearity

=
n∑
i=1

1

λi
〈b,vi〉λivi scaling

=
n∑
i=1

〈b,vi〉vi

= b.

The result can also be put in a more suggestive form:

x =
n∑
i=1

1

λi
(v>i b) vi

=

(
n∑
i=1

1

λi
viv
>
i

)
b.

The matrix in bracket is therefore M−1. You can see that it sends vj 7→ 1
λj

vj :(
n∑
i=1

1

λi
viv
>
i

)
vj =

n∑
i=1

1

λi
vi(v

>
i vj)

=

n∑
i=1

1

λi
viδij

=
1

λj
vj ,

which is exactly what you would expect M−1 to do; undo the scaling caused by M .

Dynamical Systems

Another use of diagonalisation is in solving

d

dt
x = Mx, x(0) = x0,

where again M is self-adjoint. Here we want to find how x(t) evolves given the initial condition
x0. Again, if we diagonalise M , the equation is easy to solve:

d

dt
x = PDP−1x.
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Multiply both sides by P−1:

d

dt
P−1x = DP−1x.

Let y = P−1x. Then we have a dynamical system for y:

d

dt
y = Dy, y(0) = P−1x0.

Since D is diagonal, the system becomes decoupled, so we are just solving component-wise. For
each i (no summation convention):

dyi
dt

= λiyi =⇒ yi(t) = cie
λit,

where ci are constants of integration. Putting this altogether:

y(t) =
n∑
i=1

eλitciei,

and multiply through by P gives

x(t) =

n∑
i=1

eλitcivi. (∗)

The constants of integration can be determined by the initial condition:

x0 =

n∑
i=1

civi =⇒ ci = 〈x0,vi〉.

Hence the solution is

x(t) =

n∑
i=1

eλit〈x0,vi〉vi.

If we draw the (hyper)cube with corner x(t), then its edge in the ith direction is expand-
ing/contracting exponentially at rate λi.

Remark 1.2. The fact M> = M was not used until the very last step. In fact, (∗) is still
true for diagonalisable matrices, though the vi’s need not be orthonormal any more. In this
case, ci = 〈x0,vi〉 is no longer true. These ci’s will exist by the fact that vi’s form a basis, but
determining these coefficients will require Gaussian elimination to solve

[v1 . . . vn]

c1...
cn

 = x0,

which takes far longer than computing a dot product.

2 Self-Adjoint Operator

Consider the Dirichlet boundary problem{
Ly = f x ∈ [a, b]

y = 0 x ∈ {a, b},
(DBP)

where L is a differential operator. Examples to keep in mind include:
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Heat operator. Ly = −y′′;

Radial part of Polar Laplacian. Ly(r) = −1
r
d
dr

(
r dydr

)
. This gives Bessel functions.

Polar part of spherical Laplacian. Letting x = cos θ,

LP (x) = − d

dx

(
(1− x2) d

dx

)
P (x).

This gives Legendre Polynomials.

In this set of notes, we will examine the heat operator L = − d2

dx2
in detail. This means we

are solving {
−y′′ = f x ∈ [a, b]

y = 0 x ∈ {a, b},
(DH)

which models the equilibrium temperature in [a, b] subject to the Dirichlet boundary condition
y(a) = y(b) = 0. We claim that solving Ly = f is basically solving Mx = b in infinite
dimension. First we need to say what we mean by infinite dimension.

A matrix is a linear operator from Rn to Rn. Here, the heat operator has domain

domain =
{
y ∈ C2([a, b]) : y(a) = y(b) = 0

}
, codomain = C([a, b]).

Both are vector spaces of infinite dimension. Note that the boundary condition is encoded in
the domain of the linear operator.

Now we need to define a suitable notion of self-adjointness. A real symmetric matrix was
defined to be M> = M , and here we generalise the idea of the transpose:

Definition 2.1. A matrix M is self-adjoint with respect to the inner product 〈·, ·〉 if for all
x,y ∈ Rn,

〈x,My〉 = 〈Mx,y〉.

In Rn, we usually take the inner product to be the dot product, in which case we recover the
definition M> = M , but in the infinite-dimensional case, it may sometimes be more convenient
to choose a different inner product than the obvious one.

Remark 2.2. In Rn, all inner products are of the form

x>Ay, (∗)

where A is a positive-definite symmetric matrix. Positive-definite means its eigenvalues are
all positive. This is to ensure x>Ax ≥ 0 with equality if and only if x = 0. Matrices with
this property are called non-degenerate. Here’s a quick proof of eigenvalues all positive ⇐⇒
positive definite:

Proof. Suppose A is a symmetric matrix that is not positive-definite. Let v be a unit eigenvector
of non-positive eigenvalue λ. Then

v>Av = λv>v = λ ≤ 0,

a contradiction to the non-degenerate condition.
Conversely, suppose A is positive-definite. Then all of its eigenvalues λi > 0. For any

nonzero x, we can write it as a linear combination of eigenvectors,

x =
n∑
i=1

civi,
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where ci = x>vi because vi’s are orthonormal. So

x>Ax = x>A

n∑
i=1

civi

= x>
n∑
i=1

λicivi

=

n∑
i=1

λicix
>vi

=

n∑
i=1

λic
2
i > 0.

The inequality is strict because ci’s are not all zero.

The natural generalisation of self-adjointness is therefore:

Definition 2.3. A linear operator L is self-adjoint with respect to the inner product 〈·, ·〉 if for
all functions f, g,

〈f,Lg〉 = 〈Lf, g〉.

The inner products on the vector space of functions we consider will be of the form

〈f, g〉w :=

∫ b

a
w(x)f(x)g(x) dx,

where w : [a, b]→ R≥0 is a continuous function which is only zero at finitely many points. It is
called the weight function and takes the role of A in equation (∗) above. The condition on w is
to ensure non-degeneracy of the inner product.

The self-adjoint operators, like symmetric matrices, have an orthonormal eigenbasis.

Theorem 2.4 (Spectral Theorem). If L is self-adjoint, then there exists y1, y2, . . . of eigen-
functions such that any suitably nice function can be written uniquely as an infinite linear
combination of these functions.

This theorem can be thought of as saying L can be decomposed as

L = PDP−1,

where D is the infinite-dimensional matrix diag(λ1, λ2, . . . ) and P is the infinite-dimensional
orthogonal matrix with infinitely many columns y1, y2, . . . .

3 Sturm-Liouville

We can now solve Ly = f for self-adjoint L. There are basically 3 steps, with the last one being
“done by inspection”.

Step 1. Show that L is self-adjoint with respect to some inner product 〈·, ·〉 which you should
specify.

Step 2. Find the eigenfunctions yi(x). If it’s complicated you will probably need to use the
series method.
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Step 3. Put it all together: we are attempting to solve Ly = f . Like the finite-dimensional
analogue, we know that f can be written as an “infinite” linear combination of the eigen-
functions:

Ly(x) = f(x) =
∞∑
n=1

〈f, yn〉wyn(x),

so by inspection, the solution is

y(x) =
∞∑
n=1

〈f, yn〉w
λn

yn(x),

which we think as undoing the scaling caused by L. That’s all. In practice you just
substitute w found in Step 1 and yi found in Step 2 into this formula.

Remark 3.1. We can also put this equation is a more suggestive form:

y(x) =
∞∑
n=1

1

λn

(∫ b

a
w(ξ)f(ξ)yn(ξ) dξ

)
yn(x)

=

∫ b

a

(
w(ξ)

∞∑
n=1

yn(x)yn(ξ)

λn

)
f(ξ) dξ

=⇒ y(x) =

∫ b

a

(
w(ξ)

∞∑
i=1

yi(x)yi(ξ)

λi

)
f(ξ) dξ.

There is a name for the term in parantheses:

G(x; ξ) := w(ξ)
∞∑
n=1

yn(x)yn(ξ)

λn

is called the Green’s function of L, and can be regarded as L−1.

4 Heat Operator

We will apply Sturm-Liouville Theory to solve{
−y′′ = f x ∈ [0, L]

y = 0 x ∈ {0, L}.

Step 1. This operator is self-adjoint with respect to the weight w ≡ 1. We can verify this by
taking any function y1, y2 in the domain of L, i.e.

y1, y2 ∈
{
y ∈ C2([0, L]) : y(0) = y(L) = 0

}
,

and compute: ∫ L

0
y1(x)Ly2(x) dx =

∫ L

0
y1(x)(−y′′2(x)) dx

=
��

���
���:

0
[−y1(x)y′2(x)]L0 +

∫ L

0
y′1(x)y′2(x) dx
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=���
���

�:0
[y′1(x)y2(x)]L0 −

∫ L

0
y′′1(x)y2(x) dx

=

∫ L

0
Ly1(x)y2(x) dx.

Note that it is at this step where we use the boundary data. The trick was to encode the
boundary data in the domain of L. This doesn’t have a finite-dimensional analogue.

Step 2. The eigenfunctions can be found by solving

−y′′ = λy, y(0) = y(L) = 0.

We can solve this using ordinary second-order methods. This gives countably many solu-
tions:

yn(x) ∝ sin
nπx

L
,

with eigenvalue λn = n2π2

L2 , where n = 1, 2, 3, . . . . We normalise this:∥∥∥sin
nπx

L

∥∥∥2 =

∫ L

0
sin2 nπx

L
dx =

L

2

=⇒ yn(x) =

√
2

L
sin

nπx

L
.

Step 3. Thus the solution is

y(x) =

∫ L

0

(
w(ξ)

∞∑
n=1

yn(x)yn(ξ)

λn

)
f(ξ) dξ

=

∫ L

0

 ∞∑
n=1

√
2
L sin nπx

L

√
2
L sin nπξ

L

n2π2/L2

 f(ξ) dξ

=

∫ L

0

( ∞∑
n=1

2L

n2π2
sin

nπx

L
sin

nπξ

L

)
f(ξ) dξ,

so we just need to substitute a concrete forcing term f to get the solution.

5 Physical Meaning of Eigenfunctions

The eigenfunctions of the heat operator satisfies −y′′ = λy. We saw that the eigenfunctions are√
2

L
sin

nπx

L
.

What is the physical significance of these functions?
These are the heat distributions which decay without changing the nature of their shape in

the time-dependent heat equation

∂y

∂t
− ∂2y

∂x2
= 0 or

∂y

∂t
+ Ly = 0. (5.1)

Let me explain what I mean by “nature of their shape”. If we initialise the heat as

y(x, 0) =

√
2

L
sin

nπx

L
,
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then

y(x, t) =

√
2

L
sin

nπx

L
e−nπt/L,

so the shape remains the same (still a sine) but the amplitude decays exponentially. The higher
modes (large n) decay faster than the lower modes (small n).

If we initialise the heat as something that is not an eigenfunction, then the evolution of
the heat will not be as simple as an exponential decay of the amplitude. To calculate the
evolution, we should decompose it into eigenfunctions, and make each of those coefficients
decay exponentially, then add them back up:

y(x, 0) =

∞∑
n=1

cnyn(x) (5.2)

=⇒ y(x, t) =
∞∑
n=1

cnyn(x)e−λnt. (5.3)

The Heat Equation ∂y
∂t + Ly = 0 (Equation 5.1) with initial condition y(x, 0) =

∑∞
n=1 cnyn(x)

(Equation 5.2) is the infinite dimensional analogue of solving

d

dt
x +Mx = 0, x(0) =

∞∑
n=1

cnvn,

which has solution

x(t) =
∞∑
n=1

cnvne
−λnt.

6 Bessel Example

For the 1D heat equation, we did not need to make use of the weight function. We simply set
it to 1. In this example, we will see how the weight function becomes important.

We are solving 2D Poisson’s Equation for the case that the forcing function f is radially
symmetric. Lu := −1

r

d

dr

(
r
du

dr

)
= f(r) r < 1

u = 0 r = 1.

This solves the equilibrium temperature in the disk with radially symmetric heat source f and
0 temperature at the wall r = 1.

Step 1. We set w(r) = r this time (the next section will say how we found this). Now L is
self-adjoint with respect to 〈·, ·〉r, as we can verify: take any

u1, u2 ∈ {u ∈ C2([0, 1]) : u(1) = 0} = domL.

Then ∫ 1

0
u1(r)Lu2(r)r dr =

∫ 1

0
u1(r)(−ru′2(r))′ dr

= −[��
��*0

u1(1)1u′2(1)− u1(0)0u′2(0)] +

∫ 1

0
ru′1(r)u

′
2(r) dr,
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∫ 1

0
u2(r)Lu1(r)r dr =

∫ 1

0
u2(r)(−ru′1(r))′ dr

= −[��
��*0

u2(1)1u′1(1)− u2(0)0u′1(0)] +

∫ 1

0
ru′2u

′
1 dr,

=⇒ 〈u1,Lu2〉r =

∫ 1

0
ru′2(r)u

′
1(r) dr = 〈Lu1, u2〉r.

Hence L is self-adjoint with respect to 〈·, ·〉r. Note we did not need u1(0) = u2(0) = 0 as
a boundary condition, since the weight function took care of that in the boundary term
in u1(0)0u′2(0). It also physically does not make sense to impose u1(0) = u2(0) = 0 as the
centre of the disk is not part of the boundary.

Step 2. We have to find the eigenfunctions by solving

−1

r

d

dr

(
r
du

dr

)
= λu

=⇒ ru′′ + u′ + λru = 0.

We use the method of power series to solve this. Since r = 0 is singular, we try

u(r) =

∞∑
n=0

anr
n+σ.

We will not provide the details here, but you should get σ = 0, 0 repeated root, so putting
in σ = 0 and recursively finding an, we get the Bessel function of the zeroth order.
Normalising gives:

un(r) =

√
2

J ′0(jn)
J0(jnr),

for n = 1, 2, . . . , with eigenvalues λn = j2n, where

• J0 is a function that cannot be written as elementary functions. It is called the Bessel
function of order 0:

J0(r) =

∞∑
n=0

(−1)n

22nn!2
r2n.

This is the function for which if you initialise as heat, the nature of its shape will
stay the same (and the amplitude decays exponentially).

• jn is the nth zero of J0.

• The factor in front comes from normalisation (remember to use the weighted norm):∫ 1

0
rJ0(jnr)

2 dr =
1

2
J ′0(jn)2.

• As this was a second-order ODE, we expect two linearly independent solutions. The
other one, called Y0, was rejected because it is not defined at r = 0.
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Step 3. Putting it all together, we have

u(r) =

∫ a

0

(
w(ρ)

∞∑
n=1

un(r)un(ρ)

λn

)
f(ρ) dρ

=

∫ a

0

(
ρ
∞∑
n=1

2

j2nJ
′
0(jn)2

J0(jnr)J0(jnρ)

)
f(ρ) dρ.

This is the Sturm-Liouville solution for radially symmetric solutions to the heat equation:
given a radially symmetric heat source f , we have solved for the temperature u.

7 Sturm-Liouville Form

Student: Okay, for the heat example and the Bessel example you found the weight function
by inspection, but how do you do it in general?
Professor: A general second-order differential operator looks like

L = α(x)
d2

dx2
+ β(x)

d

dx
+ γ(x).

We will now show that

w(x) = exp

∫ x β − α′

α
dx

will work.

Proof. We have

wLf = wαf ′′ + wβf ′ + wγf

= (wαf ′)′ − w′αf ′ − wα′f ′ + wβf ′ + wγf

= (wαf ′)′ + (wβ − w′α− wα′)f ′ + wγf.

It would be nice if the f ′ term vanishes, so we require

w′α = w(β − α′).

This is a separable equation:

dw

w
=
β − α′

α
=⇒ w = exp

∫ x β − α′

α
dx.

Now

wLf = (wαf ′)′ + wγf.

This is a very nice form, called the Sturm-Liouville form, which is (clearly, in the perspective
of the professor) self-adjoint. For the student, we can check for self-adjointness in more detail:
for any f, g with Dirichlet boundary conditions (f(a) = f(b) = g(a) = g(b) = 0):

(Lf, g)w =

∫ b

a
wLfg dx

=

∫ b

a
(wαf ′)′g dx+

∫ b

a
wγfg dx
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=���
��:0

[wαf ′g]ba −
∫ b

a
wαf ′g′ dx+

∫ b

a
wγfg dx.

Here the boundary term disappears because g(a) = g(b) = 0. Similarly,

(f,Lg)w =

∫ b

a
fwLg dx

=

∫ b

a
f(wαg′)′ dx+

∫ b

a
wγfg dx

=���
��:0

[fwαg′]ba −
∫ b

a
wαf ′g′ dx+

∫ b

a
wγfg dx.

This time we used f(a) = f(b) = 0. Comparing the two results, we have

(Lf, g)w = (f,Lg)w,

thus demonstrating that L is self-adjoint with respect to (·, ·)w.

Remark 7.1. The Bessel function is associated to the linear operator

L = −1

r

d

dr

(
r
du

dr

)
= −d

2u

dr2
− 1

r

du

dr
,

so α = −1, β = −1
r , so the formula gives

w = exp

∫ r −1
r − 0

−1
dr = exp ln r = r.

Remark 7.2. Let us define Sturm-Liouville form more officially. A second-order differential
operator is in Sturm-Liouville form if

Lf = −(pf ′)′ + qf,

for some functions p(x), q(x). Note the minus sign which was absent in the proof above. It is
introduced by convention/convenience, but does not affect whether the operator is in Sturm-
Liouville form or not, since the minus sign can be readily absorbed by p.

Remark 7.3. Many differential equations already come in Sturm-Liouville form, e.g. Legen-
dre’s differential equation

L = −((1− x2)P ′(x))′.

This corresponds to

p(x) = 1− x2

q(x) = 0.

In this case, the weight function will automatically be 1, because L is already self-adjoint.

Remark 7.4. In the case of the Hermite differential equation,

Lf = −f ′′ + 2xf ′,

the weight function is not 1. The weight is

w(x) = exp

∫ x β − α′

α
dx = exp

∫ x 2x− 0

−1
dx = ex

2
.
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However, we don’t like memorising random formulae, so we usually derive it again. It is tradi-
tional to derive the weight function by requiring f to be an eigenfunction:

−f ′′ + 2xf ′ = λf.

Now LHS resembles an integrating factor problem, with integrating factor

µ = e
∫ x 2x = ex

2
.

Hence we multiply both sides by the integrating factor to get

−ex2f ′′ + 2xex
2
f ′ = −(ex

2
f ′)′ = ex

2
λf.

8 Other Boundary Conditions

So far we have only looked at Dirichlet boundary conditions. These were sufficient for L to be
self-adjoint, as the boundary term [· · · ]ba vanishes when we do integration by parts. Recall how
this worked:

(Lf, g)w =

∫ b

a
wLfg dx

=

∫ b

a
(wαf ′)′g dx+

∫ b

a
wγfg dx

=���
��:0

[wαf ′g]ba −
∫ b

a
wαf ′g′ dx+

∫ b

a
wγfg dx.

But the boundary term can vanish for other reasons. For example, if we had Neumann boundary
conditions instead, i.e. f ′(a) = f ′(b) = g′(a) = g′(b) = 0, then the term would vanish too.
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