
IB Methods Green’s Function

Green’s Function

1 A Floating Oil Tanker

A ship is floating in the middle of the sea and goes up and down, up and down (c.f. sheet 3
of IA Differential Equations). In fact, it is undergoing simple harmonic motion, which we can
show using Archimedes’ Principle.

Archimedes: the upward force is equal to the weight of water displaced.

We model the depth of the ship using depth z(t), where z = 0 means the boat is at equilibrium
height and z > 0 means the ship is below the equilibrium. If the sea has density ρ, and the ship
has mass M and cross-sectional area A, then the upward force is gρAz, and hence by Newton’s
second law,

Mz̈ = −gρAz.

The minus sign says the direction of the displacement is always opposite to the force.

z

This is a second order ODE

z̈ +
gρA

M
z = 0

and we can solve this:

z(t) = α cos(ωt) + β sin(ωt),

where ω =
√

gρA
M is the angular frequency (if ω = 2π then one oscillation is completed in 1

second).
The coefficients α and β are determined uniquely by the initial conditions. For example, if

the boat was at depth 1 initially with no initial velocity, then

z(0) = 1, ż(0) = 0 =⇒ z(t) = cos(ωt).

So a nice, comfortable cosine. For the passengers who feel nauseous even at the slightest
perturbation, we had better start the ship at equilibrium with no initial velocity. Then

z(0) = 0, ż(0) = 0 =⇒ z(t) = 0.

An unperturbed ship remains perfectly still in still water.
But then a domestic cat appears and begins to perturb it!
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It’s Schrödinger’s cat. He was not happy being trapped inside a box for the first experimental
run, and decided to come out to the deck of the oil tanker to let off some steam before he has
to go back in for a second round of experiment. Being very unpredictable, he applies a wildly
erratic force f(t) to the ship:

t

f(t)

Oh dear. Looks like he is throwing a tantrum. The question is: what is the depth of the
ship now? We have an equation for that. Back to Newton’s second law the force on the ship is
a combination of the buoyancy force and the cat’s, so:

Mz̈ = −gρAz + f(t).

Rearranging gives

z̈ + ω2z =
1

M
f(t). (∗)

Thus we have a forced wave equation to solve. In IA Differential Equations, we solve this
by finding the complementary function: no problem, it is a linear combination of cos(ωt) and
sin(ωt) as before, and then guessing a particular integral zp(t). However, the cat is producing
a very strange force which cannot be written easily as elementary functions, so we have no idea
how to get this particular integral. How should we proceed?

2 Green’s Brilliant Idea

The captain runs across the ship to George Green’s cabin to inform him of the unfortunate
situation. Green looks at the equation and tells the captain not to be afraid. He scribbles out
equation (∗) on a large piece of brown paper with a black marker (as he does on his youtube
channel) and stares at it for a while. He then crosses off the forcing term and replaces it with
a Dirac delta:

z̈ + ω2z = δ(t− τ). (OWL)

The Dirac delta models an impulse at τ .
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This models the effect of a bird landing on the ship at time τ and then taking off.
Captain: What good is that? We don’t care about birds; we have a catastrophe at the

moment!
Mr Green ignores him, and continues to solve the equation involving a bird landing. There

is no disturbance apart from t = τ , so the ship undergoes harmonic motion before and after τ :

z(t) =

{
α1 cos(ωt) + β1 sin(ωt) t < τ

α2 cos(ωt) + β2 sin(ωt) t > τ.

The coefficients α1, β1, α2, β2 depend on τ and we have to find them. But the boat was stationary
at t = 0, so in fact it will be stationary for all times up to τ :

z(t) =

{
0 t < τ

α2 cos(ωt) + β2 sin(ωt) t > τ.

The impulse at time τ initiates some initial velocity of the ship just after time τ . By integrating
equation (OWL) between time τ− and τ+, we get

ż(τ+)− ż(τ−) = 1.

Since ż(τ−) = 0 (boat was not moving before time τ), we have ż(τ+) = 1. By continuity, we
have z(τ+) = 0 (the ship is still at height 0 just after the impulse, as ships don’t teleport). This
gives us two initial conditions to find α2 and β2. However, he is clever and decides to rewrite
the linear combination as

z(t) =

{
0 t < τ

α3 cos(ω(t− τ)) + β3 sin(ω(t− τ)) t > τ.

This is still the most general form, except we have traded in α2, β2 for α3, β3. Now z(τ+) =
0 =⇒ α3 = 0, and ż(τ+) = 1 =⇒ β3 = 1/ω, so

z(t) =
1

ω
sin(ω(t− τ))1t>τ .

The graph looks like

τ
t

z(t)
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We see that at time τ the boat sinks (remember z > 0 means the ship goes downwards, because
z is depth), and then oscillates with simple harmonic motion after that.

Now we move onto a slightly more advanced situation. What if we have two owls, each
attacking the ship at different times and different intensities? Then we are to solve

z̈ + ω2z = f1δ(t− τ1) + f2δ(t− τ2),

where τi is the attacking time of the ith owl and the constants fi represent the intensity.
Fortunately, we do not need to do any more calculations. We know how to solve the solution
for one owl, so if we have two owls we can simply add the two solutions together!

z(t) =
1

ω

[
f1 sin(ω(t− τ1))1t>τ1 + f2 sin(ω(t− τ2))1t>τ2

]

τ1 τ2

t

z(t)

We can see there are two impulses. In the plot above, the second one is more intense than the
first one.

What about finitely many owls? No problem:

z(t) =
1

ω

n∑
i=1

fi sin(ω(t− τi))1t>τi .

The ship suddenly jerks violently, knocking over a candle which sets the brown paper aflame.
Green is so deep in thought that he doesn’t even notice. It is only when the paper has burnt
completely into ash that he suddenly stands up and declares:

A cat is simply a superposition of uncountably many owls!

Captain: What do you mean?
Green explains while he finds his balance. A general forcing term f(t) can be decomposed

into a superposition of Dirac deltas:

f(t) =

∫ ∞
0

f(τ)δ(t− τ) dτ.
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This equation is a result of the sampling property of δ, but we can interpret it in a different
way. We can think of the coefficient f(τ) as the intensity of the τth owl, who is applying a force
δ(t− τ) to the ship. By adding up the solution for the τth owl, which is

f(τ)
1

ω
sin(ω(t− τ))1t>τ ,

the overall solution must be

z(t) =

∫ ∞
0

f(τ)
1

ω
sin(ω(t− τ))1t>τ dτ !

This is my attempt to draw uncountably many owls. However, the LATEXdocument didn’t
compile so I’ll have to make do with this one.

3 Initial Value Problems

While the Captain hurries off to prevent the sinking of his ship, let’s try to generalise Green’s
idea. It works for all kinds of differential operators. The idea of superposition will work as long
as the differential operator is linear. Let’s look at the general formulation. We would like to
solve {

Lu(t) = f(t) t ≥ 0

u(0) = u̇(0) = 0.
(IVP)

Here L is a second-order differential operator:

Lu(t) = α(t)
d2u

dt2
+ β(t)

du

dt
+ γ(t)u(t).

We define Green’s function G(t; τ) to be the solution to{
LG(t; τ) = δ(t− τ) t ≥ 0

G(0; τ) = Ġ(0; τ) = 0.

Here we have used a semicolon to separate t from τ , as is traditional. We view τ as a parameter
rather than another variable, so it may be more helpful conceptually to think of G(t; τ) as Gτ (t).
What we are doing here is solving for a family of solutions with parameter τ . In the case of the
wave equation, G(t; τ) represents the depth of the ship due to an impulse at time τ .

We solve this problem using methods we learnt from IA Differential Equations. First we
have to find complementary functions. There are two of them, say u1 and u2, because L is
second-order. Then since there is no forcing apart from t = τ , we are solving the unforced
equation on the intervals [0, τ) and (τ,∞), giving:

G(t; τ) =

{
Au1(t) +Bu2(t) t ∈ [0, τ)

Cu1(t) +Du2(t) t ∈ (τ,∞).

But just like the harmonic oscillator example above, the initial condition G(0; τ) = Ġ(0; τ) = 0
forces A = B = 0. Furthermore, it is more advantageous to rewrite Cu1(t)+Du2(t) in a cleverer
form as Green did:

G(t; τ) =

{
0 t ∈ [0, τ)

Eu1(t− τ) + Fu2(t− τ) t ∈ (τ,∞).
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Thus the Green’s function for IVP is always of the form

G(t; τ) = 1t>τ · (some function).

Now that we have G(t; τ), we can simply write down the solution for (IVP) by inspection
using Green’s Brilliant Idea:

u(t) =

∫ ∞
0

f(τ)G(t; τ) dτ. (GBI)

We can verify this is true:

Lu(t) =

∫ ∞
0

f(τ)LG(t; τ) dτ diff. under integral sign

=

∫ ∞
0

f(τ)δ(t− τ) dτ definition of G(t, τ)

= f(t) sampling property.

Remark 3.1. A final remark is on causality. Note that (GBI) can be written as

u(t) =

∫ ∞
0

f(τ)1t>τG(t; τ) dτ

=

∫ t

0
f(τ)G(t; τ) dτ.

What I’ve done here is to notice that 12t>τ = 1t>τ so thatG, which equals to 1t>τ ·(some function),
is unaffected. Then by the property of the indicator function, we can change the integration
limit to [0, t). What this says now is that the value of u(t) is determined only by owl-jumps
that occurred at before time t, since τ is always less than t in the integral. This is consistent
with the fact that owls in the future cannot affect the present.

=

∫ ∞
0

(τ) dτ

THE END
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