Contour Integration

Step 1. Define f(z) you wish to integrate and call the integral *I*. Always swap sin and cos for an e^{iz} so that you can apply Jordan's Lemma, e.g.

$$I = \int_{-\infty}^{\infty} \frac{\sin z}{z} \, dz = \operatorname{Im} \int_{-\infty}^{\infty} \frac{e^{iz}}{z} \, dz$$

If your function f has a branch cut, define it here, e.g. take $\log z$ to have argument $(-\pi,\pi)$.

Step 2. Draw out your contour, labelling the contours systematically (e.g. C_0, C_1, \ldots), put in the residues with an x, and draw any necessary branch cuts. Use shorthand, e.g.

$$\int_{C_0} \equiv \int_{C_0} f(z) \, dz.$$

Step 3. Evaluate the integral along every contour systematically.

• Jordan's Lemma: if $|g| \to 0$ as $|z| \to \infty$ for z in the upper half plane, and a > 0, then

$$\int_{C_R} e^{iaz} g(z) \, dz \to 0,$$

where C_R is the semicircular contour $C_R = \{Re^{i\theta} : \theta \in [0, \pi]\}.$

• Indentation Lemma: if z_0 is a simple pole of f and C_{ε} is a anticlockwise arc of angle α around z_0 , then as $\varepsilon \to 0$,

$$\int_{C_{\varepsilon}} f(z) \, dz \to i\alpha \operatorname{res}_{z=z_0} f(z).$$

- Use O notation for less clutter.
- For more complicated curves, write out the parametrisation for the curve to prevent careless mistakes.
- **Step 4.** State the nature of each pole and compute every residue inside the curve. Put in the factor of $2\pi i$ here already.
 - Simple poles:

$$\operatorname{res}_{z=z_0} f(z) = \lim_{z \to z_0} (z - z_0) f(z)$$

$$\operatorname{res}_{z=z_0} \frac{f(z)}{g(z)} = \lim_{z \to z_0} \frac{f(z)}{g'(z)}$$
 very useful

• Pole of order n:

$$\operatorname{res}_{z=z_0} f(z) = \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} \left[(z-z_0)^n f(z) \right] \Big|_{z=z_0}$$

• L'Hopital's rule may be helpful.

$$\sum_{i} \int_{C_i} = \pm 2\pi i \sum \text{residues},$$

(negative sign for clockwise contours).

Last edited: March 15, 2021