
IA Vectors and Matrices Span, Linear Independence and Basis

Span, Linear Independence and Basis

1 Span

Suppose you live in R2 and you are sitting in your spaceship at the origin. Let’s say you want
to get to another point (x, y) in R2. To navigate around space, you use the arrow on your
keyboard. However it turns out the navigation system isn’t that easy to use. If you press LEFT
or RIGHT, instead of moving horizontally, you move in the (3, 2) direction. If you press UP or
DOWN you move along (1, 1). The diagram below represents the spaceship’s wonky controls
schematically. Question: can you reach your destination (x, y)?

x

y

RIGHT

UP

Suppose you want to reach (0,−1). Then you should do the following:

[
0
−1

]
=

[
3
2

]
− 3

[
1
1

]
.

This means: press RIGHT for 1 second which will take you to (3, 2), then backtrack by
pressing DOWN for 3 seconds to get to (0,−1).

x

y

RIGHT

3 DOWN

In fact you can reach any location on the xy-plane! To reach (a, b), we need to find λ and
µ such that

[
a
b

]
= λ

[
3
2

]
+ µ

[
1
1

]
.

Last edited: March 24, 2021 Page 1



IA Vectors and Matrices Span, Linear Independence and Basis

Here, a, b are known quantities and λ, µ are unknown. To find λ, µ, we can solve the simultaneous
equation {

a = 3λ+ µ

b = 2λ+ µ.

Subtract (1) − (2) to get a − b = λ, and substitute into equation (2) to get µ = b − 2λ =
b− 2(a− b) = −2a+ 3b. So

λ = a− b
µ = −2a+ 3b

gives you the required set of instructions to navigate to the point (a, b). In the first example,
we had taken a = 0, b = −1, which indeed gives λ = 1 and µ = −3.

This captures the definition of span. The span of (3, 2) and (1, 1) is the set of points you
can reach using your spaceship, and it is equal to the xy-plane:

span

{[
3
2

]
,

[
1
1

]}
=

{
λ

[
3
2

]
+ µ

[
1
1

]
: λ, µ ∈ R

}
= xy-plane.

This is the set of all points you can reach by controlling λ for joystick 1 and µ for joystick 2
(whether forwards or backwards).

Now what if we equipped our spaceship with more engines which allows us to move in more
directions?

Definition 1.1 (Span). Let v1, ..., vn be vectors in Rd. The span of these vectors is the set

span{v1, ..., vn} = {λ1v1 + ...+ λnvn : λ1, ..., λn ∈ R} .

Informally, you can interpret this as:

if your spaceship is equipped with engines with directions v1, ..., vn, then the span is defined to
be the set of all points your spaceship can reach.

Remark 1.2. Note that the span will always contain the origin because that’s where you start
(λ = 0, µ = 0). Also note that span is always a vector subspace (a line, a plane etc.) because
you can only move in straight lines. So span will never be a circle for example.

Remark 1.3. Note that the λ’s can be negative. This means we should activate the joystick
for |λ| seconds but in the reverse direction.

Example 1.4. Here’s a less trivial example. Suppose you’re now in R3, and your spaceship is
equipped with engines that let you move in the directions1

0
0

 ,
1

1
1

 .
What is the set of points you can reach, i.e. what is the span of these two vectors? Answer: it
is the unique plane in 3D that passes through the points (1, 0, 0), (1, 1, 1) and (0, 0, 0) (diagram
too difficult to draw so I will omit it).

Last edited: March 24, 2021 Page 2



IA Vectors and Matrices Span, Linear Independence and Basis

2 Linear Dependence

Let’s say you’re in R3, and your spaceship is equipped with engines that let you move in the
directions 1

0
0

 ,
0

1
0

 ,
1

1
0

 .
So you have 3 joysticks that will move you in those directions respectively. Let’s first compute
the span. What are the points you can reach?

x

y

z

(1, 0, 0) (1, 1, 0)

(0, 1, 0)

span

Notice that none of the three engines will allow you to move in the z-direction. Also, it is
clear that you can move to any point that lies in the xy plane by using the first and second
vector. Thus

span


1

0
0

 ,
0

1
0

 ,
1

1
0

 = xy-plane.

We have 3 engines, but we actually only ended up with 2 degrees of freedom! We can only
move in a 2 dimensional subspace. Why? You realise that the third joystick is useless because
you could have reached (1, 1, 0) with just the other two anyway. Indeed, the formula

1
0
0

+

0
1
0

 =

1
1
0


tells you that the third joystick is useless. What the above equation means is that the third

joystick is just a “shortcut key” to the instruction “1 second for joystick 1 and 1 second for
joystick 2”, but it does not actually unlock any new directions for your spaceship.

However, you could equally say that the first joystick is useless, because you can reach
(1, 0, 0) using just the second and third vector. There is no reason to discriminate the third one
to say it is the only useless one. In order to not single out the third joystick, we move all the
vectors on one side of the equation:

1
0
0

+

0
1
0

−
1

1
0

 =

0
0
0


Last edited: March 24, 2021 Page 3



IA Vectors and Matrices Span, Linear Independence and Basis

This says there is a way to activate each joystick exactly once such that we end back up at
the origin. In mathematics, this says that these vectors are linearly dependent. Here is the
definition:

Definition 2.1 (linear dependence). The vectors v1, ..., vn ∈ V are linearly dependent if
there exists λ1, ..., λn ∈ R, not all zero, such that

λ1v1 + ...+ λnvn = 0.

In the above case, λ1 = 1, λ2 = 1, λ3 = −1 shows that the three vectors are linearly
dependent, i.e., (at least) one of the three is redundant.

Hence the algorithm for finding whether there are redundant joysticks on your spaceship is as
follows: attempt to find a way to activate joystick 1 for λ1 seconds, joystick 2 for λ2 seconds,...,
joystick n for λn seconds so that we end back up at the origin. Trivially, λ1 = · · · = λn = 0
works (not touching the spaceship controls does not move the spaceship so we are still at the
origin obviously!). But if there is a nonzero way of doing so, we have “detected redundancy”.

Confusio1: but for the controls

v1 =

[
1
0

]
, v2 =

[
0
1

]
,

we can just go east for one second, and then with the same joystick, go west for one second
again? Or even

east 1 second, north 1 second, west 1 second, south 1 second?

Then we have come back to the origin in a non-trivial way?
Professor: We said to only activate each stick once! Doing λ for joystick 1 and then −λ

for it again doesn’t count! Your little east-west journey says

1v1 − 1v1 = 0,

and your square loop journey says

1v1 + 1v2 − 1v1 − 1v2 = 0,

and this doesn’t prove anything, as it just says 0 = 0!

3 Linear Independence

The opposite of linear dependence is linear independence. The definition is the negation of
the above definition:

Definition 3.1 (linear independence). The vectors v1, ..., vn ∈ V are linearly independent
if whenever λ1, ..., λn ∈ R such that

λ1v1 + ...+ λnvn = 0,

then λ1 = ... = λn = 0.

Here is the algorithm for determining whether your engines all work ”independently” and
none of them are redundant: suppose there is a way to go back to the origin by activating the
joysticks each by λi seconds (exactly once! ). If the only way to do this is to not have done
anything at all, then we have shown that none of the engines on our ship is redundant.

1This is a character from the series of books by A. Zee. He represents the set of all students who are confused
by poor mathematical explanations at university.

Last edited: March 24, 2021 Page 4



IA Vectors and Matrices Span, Linear Independence and Basis

4 Computing span

Example 4.1. Suppose your spaceship has 3 engines to move along

v1 =

 2
2
−1

 , v2 =

2
3
2

 , v3 =

 6
3
−12

 .
Question: what dimension is your span? Are we confined to a plane forever (/) or can we
reach the whole space (,)? It is not clear from first glance, but we can do something to simplify
the problem. Here is the key observation: note that your span won’t change if you change the
middle vector to

v2′ = v2 − v1 =

2
3
2

−
 2

2
−1

 =

0
1
3

 .
What we are doing is to replace joystick 2 with a brand new joystick 2’ that has the combined
instruction of

joystick 2 for 1 second and joystick 1 (in reverse) for 1 second.

Why does this not affect the span, i.e. the places you can reach? Well, you might really miss
your original joystick 2, but have no fear! You can recover the “lost” control by doing

joystick 1 for 1 second, joystick 2’ for 1 second,

or in vector speak,

v2 = v1 + v2′ .

Thus your spaceship was just as good as before: no upgrade, no downgrade. Our spaceship now
has engines

v1 =

 2
2
−1

 , v2′ =

0
1
3

 , v3 =

 6
3
−12

 .
Note that it is now a teensy bit easier to calculate the span, because of the appearance of
the zero! It is clear to the pilots on board that joystick 2’ is not a useful way to go in the x
direction. We should welcome our new equipment with vigour and not ostracise it by labelling
it with primes. Let’s just assimilate it by renaming it v2:

v1 =

 2
2
−1

 , v2 =

0
1
3

 , v3 =

 6
3
−12

 .
(Note that doing such a renaming thing in mathematics is generally frowned upon as it could
lead to confusion. But then the downside to keeping everyone’s names constant is that you’ll
end up with beasts like v2′′′′′′′ .)

We can do the same thing with the third vector: replace it by

v3′ = v3 − 3v1 =

 6
3
−12

− 3

 2
2
−1

 =

 0
−3
−9

 .
We have bought in a new piece of equipment v3′ that allows us to do

Last edited: March 24, 2021 Page 5



IA Vectors and Matrices Span, Linear Independence and Basis

joystick 3’ for 1 second = joystick 3 for 1 second, joystick 1 (in reverse) for 3 seconds.

Again, no harm throwing away v3 in favour of v3′ , because v3 can be easily reverse-engineered:

v3 = 3v1 + v3′ .

And there is no upgrade to the ship, as the span remained the same:

span


 2

2
−1

 ,
2

3
2

 ,
 6

3
−12

 = span


 2

2
−1

 ,
0

1
3

 ,
 0
−3
−9

 .

The advantage of the new equipment, however, is that we can now see where we are going more
clearly! In order to advance in the x-direction, the only method is to steer with v1. Touching
v2 or v3 won’t change our x-coordinate because of the zero in the first entry.

There is a bonus observation: we notice obviously the second and third vector do the same
thing. They both allow us to steer in the (0, 1, 3) direction. So one of them is redundant, and
we can just throw it away. Let’s throw away v3 (goodbye!). Now

span


 2

2
−1

 ,
0

1
3

 ,
 0
−3
−9

 = span


 2

2
−1

 ,
0

1
3

 .

The two vectors we are left with are clearly linearly independent, because (2, 2,−1) lets us
move in the x direction and (0, 1, 3) doesn’t. So we can only move in a two dimensional vector
subspace (/).

The algorithm can be summarised more succinctly with what’s known as “column opera-
tions”. The steps above can be written as follows in matrix notation: 2 2 6

2 3 3
−1 2 −12

 C2 7→C2−C1−→

 2 0 6
2 1 3
−1 3 −12

 C3 7→C3−3C1−→

 2 0 0
2 1 −3
−1 3 −9

 C3 7→C3+3C2−→

 2 0 0
2 1 0
−1 3 0

 .
The notation C2 7→ C2 − C1 says replace column 2 by column 2 minus column 1.

Slogan:

Column operations preserve the span of the columns.

5 Basis

Suppose you are at the origin of Rn, but I don’t tell you what n is, so you don’t even know what
the dimension of the space you are exploring is. I tell you that your spaceship with 4 engines is
able to explore all of the space (i.e. the 4 vectors span Rn). Can you deduce that n = 4?

Actually no. Your engines might not work independently so you can only deduce that your

Last edited: March 24, 2021 Page 6



IA Vectors and Matrices Span, Linear Independence and Basis

space has dimension ≤ 4. For example, it could happen that n = 3 and your 4 engines were

v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

0
0
1

 , v4 =

1
1
0

 .
This satisfies the condition that our engines can explore the entire space. The problem was
the linear dependence. To deduce n = 4, I also need to tell you that none of your engines are
redundant, i.e. the set of vectors on your spaceship forms a basis.

Definition 5.1 (basis). A basis of a vector space V is a set of vectors that is both linearly
independent and spans V .

x

y

z

(0, 0, 1)

(1, 1, 0)

(0, 1, 1)

Remark 5.2. The picture of a basis you should have in mind is a coordinate frame. For
example, 1

0
0

 ,
1

1
0

 ,
0

1
1


is a basis for R3. Basis vectors do not need to be at right angles with each other. Actually, for
general vector spaces, the concept of ”angle” isn’t even defined.

The standard basis 1
0
0

 ,
0

1
0

 ,
0

0
1


is also basis for R3. A basis for R3 is basically any 3 vectors that are not coplanar (i.e. the
vectors cannot all lie in the same plane).

Remark 5.3. If you’re wondering whether basis has got anything to do with dimensions, the
answer is yes. In Rn, the number of vectors in a basis will always be n. You cannot get to the
whole space with fewer than n vectors, and you cannot make your vectors linearly independent
if you have n+ 1 vectors.

Remark 5.4. There is an equivalent definition for a basis. The set {v1, ..., vn} is a basis for V
if every vector v can be expressed uniquely as a linear combination of v1, ..., vn. In terms of the
spaceship analogy, to get to each point in space from the origin, there is exactly one way (not
zero, not two) to do so (touching each joystick once).

Last edited: March 24, 2021 Page 7


	Span
	Linear Dependence
	Linear Independence
	Computing span
	Basis

