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1 Basic Definitions, Examples and Motivations

Definition. A metric space is a set M with a metric d: M x M — R such that
(i) d(x,y) > 0 for all z,y, d(z,x) =0 for all z, (i) d(z,y) = d(y, z) (symmetry),
(iil) d(z, 2) < d(z,y) + d(y, z) (triangle inequality), (iv) d(z,y) =0 = x =y.
If d satisfies (i),(ii) and (iii) then it’s a semimetric.

Example. Graph with the graph distance. A graph is a pair (V, E) where
Visaset and E C V® = {e C V : |e| = 2}. Elements of V are the vertices of G
and elements of F are the edges of G. A walk in G is a sequence xq, 21, ..., T, Of
vertices such that z;_12; € E for all 1 <i <n. [Given e = {z,y} € E, x,y are
the endvertices of e, write e = xy = yz. We also write 2 ~ y]. The length of the
walk is n. This is called a walk from x¢ to x,,. If x; # x; whenever 1 < j —i < n,
this walk is called a path from zg to x,. Say G is connected if for all x,y € V
there exists a walk (or a path) in G from z to y. The graph distance is defined
as dg(x,y) = the length of a shortest path in G from z to y. Some standard
graphs: K, is the complete graph on n vertices, all (Z) edges are present. Here

1 if x #£ vy,
d@.y) = {0 ifr=y

P, is the path of length n, with n + 1 vertices xg, x1, ..., Zn, and F = {z;_12; :
1 <i<n}. As a metric space, this is {0,1,...,n} with d(z,y) = |z —y|. Cy, is
the cycle of length n. V = {x1,..,x,} and E = {z;z;41 : 1 < i <n}U{zi2,}.
B, is the rooted binary tree of depth n. And finally, H,, is the Hamming cube
V ={0,1}",  ~ y iff there exists exactly one coordinate i such that z; # y;.
Then d(z,y) = |{i : z; # y:}|.

Example. Groups with the word metric. Let G be a group generated by
some subset S. We always assume that e ¢ S and S is symmetric: Vo € S,
x=t € S. The word metric is defined to be d(x,y) = min{n : Jai,...,a, €
Ss.t.xly =ay...a,}. The Cayley Graph C(G,S) has vertex set G and & ~ y
iff 271y € S. The graph distance on G is d.

Example. Cut semimetrics. A cut on a set M is a partition of M into S
and M \ S. The corresponding cut semimetric is

0 x,y are in the same part

ds(@y) { 1 otherwise.

Definition. A normed space is a real or complex vector space V with a norm
on V, ie. a function |-||: V' — R such that (i) ||z|| > 0 for all z € V, (ii)
IAz|| = |A|||z|| for all A scalars and = € V, (iii) ||z + y|| < ||z| + ||y|| for all
z,y €V, (iv) |z =0 = z =0. Then d(z,y) = ||z — y|| is a metric on V. If
V is complete then it is called a Banach space. If ||-|| satisfies (i),(ii) and (iii)
then it is called a seminorm.

Example. Classical sequence spaces.

o 02 = (R [|],) for 1 < p < oo, with [lafl, = (7, [z:f")'". Here e, is
the standard ith basis vector. If p = co the norm is ||2]|cc = maxi<i<n |-
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o by ={(z)72y + 325 |wifP} for 1 < p < 400, with ]|, = (327, |xi|p)1/p-
loo = {(@i)32 : sup;>q |zi| < 0o}, with ||z]s = sup;s; |z;|. More gen-
erally, for a set S, 5 (S) = {z: S — R : x is bounded}. The norm is
|z|loo = sup,eg |z(s)|. Note co = ()52, : &; — 0} is a closed subspace of

Example. Classical function spaces. Let (Q, F, 1) be a measure space.
e For 1 < p < o0, Ly(p) = {f: @ = R : f measurable, [, |f[’du < oo}
. . 1
equipped with ||, = (fo, |/1P dpr) """

e For p = 00, Loo(p) = {f: @ — R : f measurable,IN € F, u(N) =
0, f bounded on Q\N}, equipped with || f||, = esssup(f) = inf{supg, y |f] :
N e F,u(N) =0}

e In the case Q = [0, 1], u= Lebesgue measure, we write L, for L,(u).

e For compact space K, C(K) ={f: K — R : f cts} is a closed subspace of
1(), eg. C(0,1]).

Example. Hilbert Space. An inner product space (IPS) is a vector space V
equipped with an inner product (-,-): V x V — R (symmetric bilinear, positive

definite). Then V becomes a normed space with ||z| = (z, x)l/Q. If V' is complete
wrt ||-||, then it’s called a Hilbert space.

Definition. Let f: M — N be a map between metric spaces. Then f is
isometric or an isometric embedding if d(f(zx), f(y)) = d(z,y) for all z,y € M.
We say f is a bilipschitz embedding if Ja,b > 0 such that

ad(z,y) < d(f(z), f(y)) < bd(x,y) Yo,y e M. (1)
The distortion of f is dist(f) = min{2 : (1) holds for f}.
Remark. (i) If a = b, then f is a scaled isometric embedding.
(ii) Definition makes sense for semimetrics.

(iii) If (1) holds, then f is Lipschitz with Lipschitz constant Lip(f) < b, where

d(f(x), f(y))
d(z,y)

Also f is injective (because of the LH inequality) and f~!: f(M) — M is
Lipschitz, with Lip(f~') < 1. Then dist(f) = Lip(f) Lip(f ™).

Lip(f)zsup{ :x,yEM,x;éy}.

Recall, if T: X — Y is a linear map between normed spaces, then T is
continuous iff T is bounded (3C > 0, ||[Tz|| < C||z|| for all x € X). The smallest
C'is | T|| iff T is Lipschitz, ||T|| = Lip(T). T is an isomorphism if 7" is a bijection,
both T and T~! are bounded. T is an isometric embedding or into isomorphism
if T is an isomorphism between X and T'(X), iff T' is bilipschitz. Then dist(T") =
IT| | T~ T is an isometric isomorphism embedding if ||Tx|| = ||z| for all
reX.
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Notation. Write X — ¢ Y if there exists an isomorphism embedding 7': X — Y
with || T [|[T~!|| < C. We say X C-embeds into Y. So X < Y iff there exists
an isometric isomorphic embedding X — Y. X ~ Y means X,Y are isomorphic.
X 2Y means X,Y are isometrically isomorphic.

Example. (i) £ <1 ().

(ii) £, <1 L, = Ly([0,1], A = Leb). proof: Fix pairwise disjoint measurable
sets (A;)$2, each of positive measure. For 1 < p < oo, consider

(@)2y = > wila A(A) 7P,
=1

and for p = oo, consider (z;)52; — > o) z;1a,.
Fact. If (Q, i) is a measure space, X C L,(Q, u) separable, then X <1 L.

Notation. For a normed space X, let Bx = {z € X : ||z|| < 1} be the closed
unit ball, and Sx = {zr € X : ||z|| = 1}, the unit sphere of X.

Proposition 1.1. For all n € N, {5 —; L, for any 1 < p < oo.

Proof. Case 1 < p < oo. Let B = By, n = Lebesgue measure on B, S = Spy.
Since p is rotation invariant, the value of [ |[(z,w)|” du(w) is the same for all
x € S. Call this . Define T: £§ — L,(B,p) by (T'z)(w) = (z,w) a~'/?. Then
T is linear and ||Tz|) = [ [(z,w)[" adu(w) = [lz[; for all x € £5. To finish,
use the fact above to embed L, (B, i) <1 L.

Case p = co. This follows from the next result and example above. O

Definition. Let X be a normed space. The dual space X* of X is X* =
B(X,R) = {f: X — R : f linear bounded}. The operator norm is | f| =
sup{|f(z)| : # € Bx}. By the Hahn-Banach theorem, VY € X, 3f € Sx~ such
that f(z) = [[z[|. So [lz] = max{g(z) : g € Sx-}.

Proposition 1.2. Let X be a separable normed space. Then X < .

Proof. Let (x,,)22; be dense in X. Then for all n € N, choose f, € Sx-,
fn(zn) = ||zn|| by Hahn-Banach. Define T: X — fo by Tax = (fn(2))52;.
Given z € X, |fn(x)| < ||fullllz]| = ||z|| for all n. So T is well-defined. T is
linear and T is bounded with ||T|| < 1. For all n € N, ||Tx,|| = ||znl]. So T
is isometric on a dense set, so by continuity 7" is isometric on the whole space
X. O

Remark. For any normed space X there exists a set S such that X < £ (5),
eg. S =9Sx~.

Corollary 1.3. (Corollary to proposition 1.1) Let M be a finite metric space.
If M embeds into Ly, with distortion < D, then M embeds into L, for all
1 < p < oo with distortion < D. i.e. Lo is the hardest thing to embed into.

Proposition 1.4. If M is an n-element subset of Li(£2, ), then M <y ¢,
where N = nl.
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Proof. Let M = {f1,..., fa}. [Aside: fi — [, fi dp is an obvious Ly (2, 1) — R,

but
‘/fi/fj < [15= 5= 1= 5l

has equality if say f; < f; a.e.] There exists a partition Q = (J,cg Qr of Q,
where Q; C {w € Q: fra)(w) < ... < fr(n)(w)}. Here we have used the finiteness
of M. [Note that we have used the subset symbol. When two fs are equal for
some w, we can arbitrarily put it in just one of the ,s.] Then

||fi—fj||1=/Q|fi—fj\du= 3 /m|fi—fj|du= 3 /Qﬂfi—/mfj

TESH TES,
Define T: M — (N by Tf; = (fm f; d“)wes . So above = |Tf; — Tf;l,. O

Example (More examples). (i) C; embeds bilipschitzly into ¢3 naturally,
with distortion v/2. It doesn’t embed isometrically. In fo, d(z,2) =
d(z,y) +d(y,z) iff y € [x,2] = {(1 —t)x +1tz:0 <t < 1}. It follows that
{5 has the unique midpoint property: Va,z € €5 there is at most one point
y (in fact exactly 1) such that d(z,y) = d(y, z) = 3d(z, 2). Cy does not
have this property.

(ii) Any n-element set in a Hilbert space embeds isometrically into f;fl.
Cannot do better in general. See example sheet. If we relax the condition
to bilipschitz, then we can do much better. In fact, Ve0,3¢ > 0 any
n-element set in Hilbert space embeds into ¢5* where m = clogn with
distortion < 1+ €. See later for proof.

Observe: If M is a finite metric space, N is a metric space and |N| > | M|,
then M bilipschitzly embeds into N.

Definition. Given families (M, )aca and (N, )a € A of metric spaces, embed-
dings fo: Mo — Na, a € A, are called uniformly bilipschitz if sup,, ¢ 4 dist(fa) <
0.

The sparsest cut problem.

Let G = (V,E) be a connected, finite graph. We are given two functions
C: E— Rt =10,00) (capacity) and D: V x V — RT (demand). A cut of G is
a partitioning (S, V' \ S) of V. The capacity of (S,V '\ S) is

C(S,V\S) = > Cw).
wEE,ueSv¢Ss

The demand of the cut is

The sparsity of the cut is C'(S,V '\ S)/D(S,V \ S) whenever D(S,V \ S) # 0.
This is NP-hard. So we look at an equivalent problem: Minimise over all cuts
with nonzero demand of the following quantity

ZuveE C(U’U)ds (U, U)
Zu,vev D(ua U)dS (uv U)
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where dg is the cut semimetric. Note the denominator is twice D(S, V' \ S).
Let ©*(C, D) be this minimum. The idea is to minimise

Z C(uwv)d(u,v),

subject to d being a semimetric and > <y, D(u,v)d(u,v) = 1. This is now a
linear programming problem with a linear normalisation condition. The property
that d is a semimetric is just constraints with inequalities. There are fast
algorithms to solve this.

Let ¢(C, D) be the minimum and d,,;, be a semimetric that achieves this
minimum. Clearly ¢(C, D) < ¢*(C, D).

Lemma 1.5. Let (M,d) be a finite semimetric space. Then (M,d) embeds
isometrically into L iff d is a non-negative linear combination of cut semimetrics.

Proof. (<) We assume there exists cuts (S;, M \ S;) for i = 1,...,k and non-
negative reals oy, ¢ = 1,...,k, such that d = Zle a;dg. Let fi: M — R be
filx) = a;1zes,, and f: M—>€ , f(z) = (fi(x))%_,. Then

k
£ () = F)ll, = Z fi(@) = fi(w)] =D ouds, (z,y) = d(x,y).

i=1

(=) By proposition 4, there exists isometric embedding f: M — ¥, some
k € N. Enumerate {f(z )1 cx € M} oas B < Biz < ... < Bim,. Let Si; = {x:
flx)s < Bij}, for 1 <i <k, 1<j<m Fixz,ye M,and fix1 <i<Ek.
Suppose f(x); = Bij, < f(y)i = Bij,- © € Sij for j < ji, y < 8y for j < jo. If
we look at the sum

m;—1 J2
Z (Bij — Bij-1)ds,; (z,y) = Z (Bi,j — Bij-1)
j=1 j=j1+1

= Bijs — Bijs

= f)i— f(@)i=f(x)i — fF(y)il -

Sum over i:

k mifl k
Z BZ,] 61,] 1 dS” (33 y) Z |f(x)z - f(y)z| = ||f($) - f(y)”l = d(xa y),
i=1 j=1 i=1
so we have written d as a sum of cut semimetrics. O

Theorem 1.6. Assume (V,d,:,) embeds into Ly with distortion at most K,
then K~'¢*(C, D) < ¢(C, D) < ¢*(C, D),

Proof. Let f: (Vi,dmin) — L1 be an embedding with distortion at most K.
Let d(z,y) = || f(x) — f(y)||;- Since dist(f) < K, there exists a > 0 such that
admin(z,y) < d(z,y) < Kadpin(z,y) for all z,y € V. By lemma 1.5, there
exists cuts (5;,V'\S;), 1 <i < k and constants a; > 0, ¢ = 1, ...,k such that
d= Ele a;ds,. Then

> wver C(uv)dmin(u,v) S 1 Ywwep Cluwv)d(u,v) iZle Vi

D) = —
A D) = Dl Vdmin(0,0) ~ K 3y ey Dl o), 0) ~ K S5,
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where v; = o; ., C(uv)dg, (u,v) and 6; = a;
I = {i:¢; >0}. The above becomes

o L2 ier(/0)0 1 v 1

wvey D(uv)ds, (u,v).  Let

©*(C, D).

O

Definition. Let f: M — N be a map between metric spaces. Assume there
exists increasing functions p1,pe: RT — RY (s <t = pi(s) < p1(t)) such
that

pr(d(x, ) < d(F(@), f() < pald(,y))  Va,y € M. (2)

We say f is a coarse embedding if in addition to (2), p1(t) — oo as t — oo.

Example. Let f: R x [0,1] = R by f(z,t) = «. This is a coarse embedding
with p1(t) = max(0,t — 1) and p2(t) = t.

Definition. We say f is a uniform embedding if in addition to (2), pa(t) — 0
ast — 0% and p1(¢) > 0 for all ¢ > 0. Equivalently this says f is uniformly
continuous, injective; f~1: f(M) — M is uniformly continuous.

Proposition 1.7. For all 1 < ¢ < oo there exists a map T: L1(Q,u) —
L, (22 x R,v) which is simultaneously a uniform and coarse embedding. (Here
v = ® A is the product measure of y and the Lebesgue measure \.)

Proof. Define T as follows. For f € L1(Q, u),

+1 if0<t< flw),
Tfw,t) = =1 if f(w) <t <0
0 else.

Note that Tf € Loo(Q X R). For f,g € L1(Q, p),

1 ifg(w) <t < fw),
Tf(wt) = Ty(w, 1) = {1 if fw) <t < gw).
So
//|wa t) = Tg(w,t)|* dt dp(w /lf W)l dpw) =17 =gl -

So |[Tf —Tgllj = If — gll,. This shows that Tf € Ly( x R).

If pi(t) = pa(t) = /9, then pi(|If = gll) = IITf = Tyll, = p2(Ilf — gll,)-
And p1(t) — oo as t — oo, and pa(t) — 0 as t — 0T and pl( ) > 0 for all
t>0. =

Proposition 1.8. For 1 < p < ¢ < oo there exists T: L,(Q, ) — Lg(Q %
R,v;C) = {f: @ xR — C: f measurable, [, [f|? < co}, which is simultane-
ously a coarse and a uniform embedding.

Lemma 1.9. For all 0 < a < 28 there exists ¢, g > 0 such that

~ cos(tz))?
f(x) 3:/R(1 ;ZSS ) dt =
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Proof. First check the integrand is in L1 (R): as t — 0, (1 — cos(tz))? ~ |¢|??, so
the integrand ~ [t|2?=%~1  so is integrable on, say, (—1, 1), since 28 —a—1 > —1.
As |t| = oo, (1 — cos(tz))? is bounded, so the integrand is ~ [¢t|~*~!, which is
integrable on R\ (—1,1), since —a— 1 < —1.

For = > 0,
_ cos(tz))B _ cos(s))B
f(x)—xa/RWzdt—xa/R(lljfi(l))xdt—zaf(l).
Also, f(0) =0, f(—z) = f(z) for all z. So f(x) = |z|*f(1) for all . O

_cos /
Proof of Proposition 1.8. [A possible attempt is Tf(w,t) = %

Then
b [ Lcosp@)?
[irspma= [ ESE B a = ).

The problem is taking T'f — Tg. The clever thing is that T is exponential.]
Define

1— eitf(w)
TI) = o

w’ = \/(1 —cos6)2 +sin” 0 = /2 — 2cos 0 = v/2(1 — cos0)'/2.
Then

a/2(1 — q/2
R e

B /522Q/20p,q/z|f(W)l”du(w) by Lemma 8, o= p, = ¢/2
= 2q/2Cp7q/2 ||fH£ .

Given f,g € L,(Q),

pitfw _ eitg(w)‘ _ ‘1 _ eit(f@)=g(@))|

Apply above computation with f replaced with f — g to get

ITf— TQHZ = 2q/ch,q/z If— 9||§-

Take p1(t) = p2(t) = \fcl/q tP/4. 0

Corollary 1.10. For 1 < p < ¢ < oo there exists T: L, — L, which is a
simultaneously coarse and uniform embedding.

Apply proposition 8 with (2, ) = ([0, 1], A) to get embedding L, — L,([0, 1] x
R;C). Then L,([0,1] x R;C) <o Ly([-1,1] x R) by f — f where

= _ JRef(s,t) s€(0,1]
J(s:1) = {Imf(—s,t) s € [-1,0).

Since L4([—1,1] x R) is separable, it embeds isometrically into L.
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Definition. Given families (M, )qnca of metric spaces, a family f,: M, — N,
a family of coarse embeddings is uniformly coarse if there exists increasing
p1,p2: RT — R such that p;(t) — oo as t — oo and

p1(d(z,y)) < d(f(z), f(y)) < p2(d(z,y))  Vz,y € M,Va € A.

There are many connections of metric embeddings with other fields of
mathematics, for example in geometry. The following two statements are non-
examinable.

Theorem (Yu). If M is a uniformly discrete metric space (every element is
separated by at least § > 0) with bounded geometry (the number of points in
any radius R is bounded by some B(R))and M coarsely embeds into Hilbert
space, then the coarse Baum-Connes conjecture holds for M.

Theorem (Kaspanov,Yu). Same M, if M coarsely embeds into a uniformly
convex Banach space then the coarse geometric Novikov conjecture hods for M.

10
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2 Fréchet embeddings, Aharoni’s theorem

Theorem 2.1 (Fréchet embedding). Any metric space M embeds isometrically
into ¢oo (M). If |M| = n < oo then it isometrically embeds into %1, If M is
separable, then it embeds isometrically into £, = o0 (N).

Proof. Fix xg € M. Define f: M — £oo(M) by f(z) = d(, ) d(-,x0). Then
for all y € M, [f(z)(y)| = [d(y,x) — d(y,z0)| < d(x,x0). So f(z) € Loo(M).
Observe that for every z,z € M, || f(z) — f(2)| ., = |ld(- ) ( 2)| o < d(z, 2)

by the triangle inequality. To get the lower bound, || f(z)
F(2)(2)] = d(w, 2).

In fact we can isometrically embed M into loo (M\{x0}). It M = {zq, ..., zpn—1},
then M — (771 x + d(-,x) works.

If M is separable, take a countable dense S C M. Then S embeds isometri-
cally into £,. This extends to an isometric embedding M — £, (given x € M,
there exists z, € S x, — . Let f(z) = lim f(x,). Since f(z,) Cauchy this
limit exists. Check that this definition is independent of the choice of sequence).

Another proof: Let f: M — (. (M) be an isometric embedding. Then
X =spanf(M) is a separable Banach space. By Proposition 1.2, X < o, O

Definition. Let mq,(n) be the least m such that every n-element metric space
embeds isometrically into £7. By Theorem 2.1, mo,(n) < n —1 for all n € N.

Aim. There exists ¢ > 0, moo(n) > n —cn??logn for all n > 2 (due to K Ball).
Background.

(i) Ramsey Theory: V¢t € N In € N if edges of K, are red-blue coloured, then
there exists a monochormatic copy of K; in K,,. Let R(t) be the least n
that works. It is easy to see that R(t) < 4%. Tt is also known that R(t) > ¢
for some ¢ > 1. Given graphs Hy, Ho, let R(Hy, Hy) be the least n s.t.
whenever edges of K, are red-blue coloured, either there exists a red copy
of Hj or there exists a blue copy of Hj inside of K,,. So R(t) = R(Ky, Ky).
We can see that this exists. If ¢ = max{|H1|,|H2|} (the order |G| of a
graph is the number of vertices), then R(Hy, H2) < R(t).

(ii) A graph G = (V, E) is bipartite if there exists a partition V = V; U V; s.t.
Ve,y e Viaoye B — z € Vi,y € Voorx € Vo,y € V5. The vertices
V1,2 are called vertex classes. If E = {zy : « € Vi,y € Va}, then G is
the complete bipartite graph. This is denoted Ky, v,. Denote K, ,, = any
Ky, v, with |Vi| =m,|V2| = n. Observe Ky o = Cy.

(iii) Given a graph G, its complement G has vertex set V(G) = V(G), and

E(G) is the complement of E(G), i.e. xy € E(G) <= zy ¢ E(Q).
Definition. For a graph G, define a metric p:

0 ifx=y
plr,y) =<1 ifzyeFE
2 otherwise.

Lemma 2.2. If (G, p) embeds isometrically into ¢k then edges of G' can be
covered by < k complete bipartite subgraphs of G.

11
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Proof. Let f: (G, p) — ¢* beisometric. Let a; = maxgeq f(x)s, B = mingeq f(z);,
i =1,....k. Observe a;—f; = maxwx,y € G(f(v)i—f(y):) < max; yeq || f() — f(y)l
2. Let I = {i =1,.,k: o — 0 = 2}. Then 2y € E(G) < i €
Ilf(x); — f(y)i] =2 <= Fielf(x); = f(y); = B; or vice versa.

Let Vi1 = {z : f(z); = a;} and Vip = {z : f(x); = B;}. Then E(G) =
Uie[ E(KVﬂ,Vm)v and |I| <k. O

Theorem 2.3. There exists C' > 0, Vn > 2, my(n) > n — Cn?/3logn.

Proof. We will use the following result: 3o > 0, R(Cy, K;) > a(t/logt)%/?
(Spencer uses probabilistic method). Now there exists b > 0,Vn if t = [bn?*/3logn],
then n < a(t/logt)?? < R(Cy,K;). [Roughly: n = (t/logt)’? = t =
n?/3logt, so logt = 2/3logn + loglogt, logt ~ logt — loglogt ~ logn. So
t ~n?3logn.] Fixn € N, let t = [bn*/3logn]. So n < R(Cy, K;), so there
exists a red-blue colouring of K, without red C4 or blue K;. Let G be the blue
graph. Let k = m.(n). Since (G, p) embeds isometrically into % , by Lemma
2.2, G = red graph is covered by < k complete bipartite subgraphs. Since
Cy = Ko ¢ G, one vertex class in each complete bipartite subgraph is of size 1.
So there exists < k vertices s.t. every edge in G is adjacent to one of them. Since
K; ¢ G, it follows that n < k+t—1,80 k = meo(n) > n—t+1 > n—Cn?/3logn
for some absolute constant C'. O

Remark. Since R(t) > C" for some C' > 1, this method won’t give better than
n — C'logn lower bound on me(n).

Aim. n — my(n) = 0o as n — co. (Pretrov, Solyanov(?), Zatitskivy(?))

Lemma 2.4 (Non-linear Hahn-Banach). Let M be a metric space, A C M,
f:+ A — R a Lipschitz map with constant L. Then there exists a Lipschitz
extension f: M — R of f with constant L.

Proof. Fix g € M\ A. Define f: AU {20} — R by
= {f(x) reA

J) = « T = xg.

We need to choose the right a € R. Want
loe = f(z)| < Ld(zo, x) Vo € A,

ie.,

Such « exists if
f(y) = Ld(y,xo) < f(z) + Ld(z,z9)  Vz,y€ A (x).

Indeed, then take

o= jgg{f@) — Ld(y, x0)}-

To see (*),
fy) — f(z) < Ld(z,y) < Ld(x, o) + Ld(xo,y) V,y € A.

If M\ A is finite or countable, then apply above recursively to get an extension.
In general, use Zorn’s Lemma to get a maximal extension (M, f). By above,
M= M. O

12
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Proposition 2.5. If A is a subset of a finite metric space M, and there exists an
isometric embedding f: A — 6‘0'3 ‘7}6, then there exists an isometric embedding
g: M — ¢IMI=F,

Proof. Let fi(z) = f(z);, 1 < i < |A] — k. Then each f; is 1-Lipschitz so
by Lemma 2.4, there exists a 1-Lipschitz extension g;: M — R. Enumerate
M\Aasvy, |[Al—k+1<i<|M|-kandlet g;(z) = d(x,y;), x € M. Then
g: M — di‘fll*k, g(x) = (gl(ar:))llfllflC is an isometric embedding. O

Background.

(i) Some more Ramsey Theory: For s > 2, n € N, K$) = {A C[n]:|A| = s},
[n] = {1,...,n}. eg. K? = K,. Then Ramsey says Vs, Vt,3n if K s
red-blue coloured, then there exists a monochromatic copy of Kgs), i.e.
JA C [n], |A] =t st. A®) ={B C A:|B| = s} is monochromatic.

Also Vs, Vt, Ve, In if Kﬁf) is c-coloured then 3 monochromatic copy of Kt(s).

(ii) Recall that a tree T is a connected, acyclic graph. Equivalently, Vz,y € T,
3 unique path z to y. If diam(7) = maxx,y € Td(x,y) < 4, then there
exists ¢ € T Va d(c,z) < 2. Call this ¢ a centre of T. Vertices in
I'(c) = {a € T : ac € E} are the main vertices. Every other vertex is
connected to a unique main vertex.

(iii) Oriented graph. An orientation of a graph G is an assignment of direction
for each edge: if e = xy € E(S), there are two choices Zfj or yf. This
is called alternating if Va either Vy € I'(z) we have z7) (z is a source) or
Yy € I'(z) we have y# (x is a sink). [The name comes from an alternating
path, because once we make a choice on one edge, all the other edges
are alternating in direction.] A connected graph has 0 or 2 alternating
orientations. It has 0 iff it has an odd cycle, i.e. not bipartite. A tree has
exactly two alternating orientations.

(iv) A metric space {z1,...,x,} is generic if the (}) distances d(z;, z;), 1 <
1 < j < n are linearly independent over Q.
Theorem 2.6. For every k € N, there exists N € N for all n > N, mqy(n) <

n—k.

Proof. Step 1. We can restrict to generic metric spaces. Proof. Let M =
{1, ..., z,} with metric d be an arbitrary metric space. For j € N, we can pick
Qg € (%, %)7 1<r<s<nst dj(z.,zs) = d(z,, xs) + aps defines a generic
metric.

Suppose Vj, 3 isometric embedding f;: ({z1,...,zn},d;) — €3 for some m.
WLOG im(f;) is bounded independent of j. By compactness, after passing to a
subsequence, we have f(z,) = lim;_,« f;(2,) exists Vr. Then f: (M,d) — {3}
is an isometric embedding.

From now on, M is an n-element generic metric space and the elements of
M are real numbers.

Step 2. Assume f: M — R is 1-Lipschitz. We define a graph G(f) with

vertex set M and xy € E <= |f(x) — f(y)] = d(x,y). We will orient an edge
zy s.t. for zj) we have f(z) — f(y) = d(z,y).

13
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Ezample. f(x) = d(x,a), then this is a star with centre a and every edge
pointing to it. For z # y in M \ {a}, f(z) — f(y) < d(=,y).

We have functions fi,...,fm: M — R, f: M — {7 given by f(x) =
(fi(x))™,. Then f is an isometric embedding <= the f; are 1-Lipschitz,
Vo #y,3i,zy € E(G(fi)). So M embeds isometrically into {7 <= the edges
of the complete graph on M can be covered by at most m Lipschitz graphs.

Step 3. Let T be a tree on M with diam(7") < 4. For fixed 2o € T, o € R,
alternating orientation of T', consider the unique function f: M — R where
flxo) = a, f(z) = f(y) = d(z,y) for all Zjj € E(T). Then f is 1-Lipschitz <=
for every path wzyz in T, d(w,x) + d(y, z) < d(z,y) + d(w, z). [We only need
<« direction.]

Proof. Given z,y € T, we need |f(z) — f(y)| < d(z,y). If dp(z,y) =0or 1,
then this is true [dr is the graph distance on T']

If we have a path 22y, then |f(z) — f(1)] = |f(z) — () + F(2) — f(3)] =
|d(x, z) — d(z,y)| < d(x,y) [here we use orientation.]

If we have a path zwzy then |f(x) — f(y)| = |f(z) — f(w) + f(w) — f(2) +
7(2) = ()] = ld(z, w) — d(w, 2) + d(z, ). T this = d(z, w) — d(w, 2) + d(=)
then < d(x,y) by assumption. If this = —d(z, w) + d(w, z) — d(z,y) then by the
triangle inequality this is < d(x, z) — d(z,y) < d(z,y).

If we have a path zuwzy then |f(z) — f(y)| = |d(z,u) — d(u,w) + d(w, z) —
d(z,y)|. WLOG this = d(z,y) — d(u, w) + d(w, z) — d(z, y) because we have an
even number of terms. By the assumption, this < d(z, z) — d(z,y) and by the
triangle inequality, this < d(z,y). Thus we have proved step 3.

A tree T on M is admissible if it has diam < 4 and satisfies the assumption
in step 3.

Step 4. Given distinct points ¢, aq, ..., a,, in M, there exists a unique ad-
missible tree on M with centre ¢ and main vertices ag, ..., a,,. Denote this by
T(c;a1,....,am).

Proof. Given € M \ {¢,a1,...,am}, z can be joined to main vertex a <=
for every main vertex b # a we have d(z,a) + d(c,b) < d(a,c) + d(x,b), i.e.

d(z,a) —d(a,c) < d(z,b) — d(c,b).

So a is uniquely determined.

Step 5. We colour M) using as colours elements of Sy as follows: given
w<x<y<zinM,let Ry = dw,z) + d(y,z), Re = d(w,y) + d(z, z),
Rs = d(w, z) + d(z,y). We give wzyz colour ijk if R; > R; > Ry. This is a
6-colouring of M®).

Main Claim. Yk € N,Vc € S3,3t. € N, every (any) monochromatic metric
space of size t. and colour ¢ can be covered by < t. — k admissible trees.

From main claim, let { = max.cg, t.. By Ramsey IN s.t. if KJ(\?) is 6-

coloured, then there exists a monochromatic Kt(4). So given n > N, an n-element
metric space M, there exists a colour ¢ € S and A C M, |A| = t. s.t. Ais
monochromatic. By main claim, the complete graph on A can be covered by
|A| — k admissible trees, so by step 2, A embeds isometrically into oAk, By
Proposition 2.5, M embeds isometrically into ¢2=*. So done. It remains to
check the main claim.

Recall the Main Claim: V¢ € S3,Vk, 3t every metric space M with |[M| =1
and colour ¢ can be coloured by ¢t — k admissible trees [edges of the complete
graph of M].

14
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Proof of Main Claim:

Case 1, ¢ = 213. Then there does not exist M of colour ¢ of size > 5 (t =5
will do). To see this, assume the contrary and aim for a contradiction. Fix
u<w<z<y<zin M. Then

d(u, w) +d(z,y) > d(u,y) + d(w, z);
d(w, ) +d(y, z) > d(w, 2) + d(z,y);
d(u,y) + d(w, z) > d(u,w) + d(y, 2).

Adding these gives 0 > 0, a contradiction.
Case 2, ¢ = 312. Same; just replace > with <.

Case 3, ¢ = 132. Mini claim: Assume if |M| = n, colour 132, then all but m
edges of K can be covered by s admissible trees. Then if |M| =n + 2
of colour 132, then all but m — 1 edges of Kj; can be covered by s + 2
admissible trees.

Proof of mini claim. |M| = n, colour 132 and we have s trees that cover
all but m edges. Let ab,a < b be one of these edges. Let |M'| =n + 2,
colour 132. WLOG M’ = M U {d’,b'}, where a < o’ < b < b and
M ((a,a’] UV, b)) = 0. Extend the s trees to the whole of M’. By step
4, add T(a;a’,b),T(b;a’,b"). Every x € M'\ {a,d’,b} is joined to a’' in
T(a;a’,b) Every x € M'\ {b,a’,V'} is joined to &' in T'(b;a’, V). O
Apply mini claim: start with |[M| =k and s =0, m = (’;) Apply mini
claim m times to get M’ with ¢t = |[M'| =k + 2(’;) =k s= 2(’;) =t—k,
m = 0.

Case 4, ¢ = 123. We prove Main Claim by induction on k. For k =1, ¢t =1 will
do. T have 0 edges so 0 trees will do. Let k£ > 1 and assume ¢ works for k. For
k+1, we prove that 2t4+3 works. Take M = {—1,0,1,2,...,t+1,t+2, ..., 2t+
1}. Consider T(0;—1,2),T(1;0,2), T(t + 1+ i;i,i +1),1 < i < t. This
covers all edges except perhaps edges between vertices in {t + 2, ..., 2t + 1}.
These can be covered by ¢t — k trees by the induction hypothesis. So we
need 2+t+t—k=2t+2—-k=|M|—(k+1).

Case 5, ¢ = 231. We show ¢t = 2k works for k. Take M = {—k,...,—1,1,...,k},
take trees T'(—i;—k,—k+1,...,—i — 1,1,..,k), 1 <4 < k. This works [a
bit fiddly and uninteresting).

Case 6, ¢ = 321. t = 4k + 1 works. M = {0,1,...,4k}, take trees T(0;1,4k +
1—i),1<i<2k T(i:2k+i,2k+i+1,..,4k +1,i) 1 <i < k. So the
number of tree is 3k = |M| — (k + 1).

O

Remark. my(n) = least m s.t. every n-element subset of some L. (€2, 1)
embeds isometrically into 7.

We define for 1 < p < oo, mp(n) = least m s.t. every n-element subset of
some L (2, u) embeds isometrically into £;".
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Remark. Note mj(n) < n! (Proposition 1.4), ma(n) =n — 1 (Example Sheet).

Theorem 2.7. For all 1 < p < oo and for all n > 2, my(n) < (g)

Remark. For 1 < p < 2, this is essentially best possible. [Example sheet:
mp(2n+1) > n.]

Lemma 2.8 (Carathéodory’s Theorem). Given L C R¥  then convL =
(N tiwi @i € Loty > 0,¥6, 3 t; = 1}. Tt follows that convL = conv L if L
is compact.

Proof. Given z € conv L, we write x = Y .~ t;z;. WLOG m > N +1,t; > 0, Vi.
Then x4, ..., z,, are affinely dependent — this means x1 — xs, 1 — T3, ..., L1 — Ty
are linearly dependent. There exists Aj,..., Ay, not all zero with > \; = 0,
> Aix; = 0. For any s € R, > (t; — s\;) = 1, > (t; — s\j)z; = z. For s > 0,
t; —sh; > 0if A; < 0. So we take s = min{¢;/\; : A\; > 0} (Fi, A\; > 0). Now
ti - 3)\7, Z O,V’L and E"L,tZ - S)\i =0. O

Proof of Theorem 2.7. Fix n > 2. Given an n-tuple M = (z1,...,2,) in some
LP(Q,/L)7 let Opr = (||xl — $j||Z)1§i<j§n € RY where N = (g) Let C = {91\/[ M
is an n-tuple in some L, (€, u)}.

Cisacone: § € C;t >0 = 0 € C. Suppose M = (x1,...,2,) is an
n-tuple in L,(Q, ), M" = (y1, ..., yn) in L, (Y, /). Then consider z; = (z;,y;) €
L,(QIIY). Then

2 = 2|10 = (Om)ij + (Oar)iy; V1I<i<j<m.

So Oy 4+ 0y € C.
Let

K=Cn{oeRY: > 6;=1

1<i<j<n

Say 0 € C is linear if there exists (¢1,...,¢,) € R" s.t. 0;; = [t; — t;]”. Let

L={0€ K :0 is linear}

= (|ti — tj|p)1gi<]‘gn ity ety €R, Z |ti — tjlp =1.
1<i<j<n

Note L is compact. K is convex so conv L C K.

Given 0 € K, say 0 = (|lz; — z;7)1<i<j<n, Where z1,...2, € Ly(Q p).
Can approximate z; with simple function y; s.t. ¢ = (|ly; — yj||Z) € K. So
we have a measurable partition Q2 = Uf’:l A, of Q s.t. y;|a, is constant Vi, r.
Let o = (lyila, = yjla,
@ =3 1 cicjen(®r)ij. Then Zf‘:l a.=1. So p = Zil ar(r/ay) € conv L.
This shows K C convL. By Lemma 2.8, K = conv L, and every 6 € C is a
sum 6 = anvzl 0., where 6, is linear for all . Note {6 : >~ 6;; =1} is (N — 1)-
dimensional. For each r, there exists t,; € R with 6, = (|t;; — t, ;") 1<i<j<n-
If 0 =60y, M= (21,....,2,) € Lp(Q, p)", define f: M — KZI)V by using these as

Z)lSKan. Then ¢, is linear and ¢ = Zle pr. Let
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coordinates: f(x;) = (t,;)E_ ;. Then one line to check that this works. For
1<i<j<n,

I1f (i) = £ ()l = Z [tri = trgl” =D (0n)ig = 055 = llzi — ;).

r

O

Theorem 2.9 (Aharoni’s Theorem). For any e > 0, any separable metric space
embeds into ¢y with distortion < 3 + €.

Motivation. Given Banach spaces X, Y, if X bilipschitzly embeds into Y, must
X be isomorphically embed into Y7 Yes, if Y is separable and there exists a
Banach Space W such that Y ~ W*. Theorem 9 shows that in general, the
answer is no.

Notation. (i) In a metric space M, for x € M and § > 0 let Bs(z) = {y €
M :d(y,z) <é}. AC M is d-dense in M if Vo € M, d(z, A) < 4.

{f € Lx(S) : Ve > 0{s € S : |f(s)] >
¢p(S) for S countably infinite.

(ii) Given a set S, let ¢o(9)
€} is finite}. So ¢g = ¢o(N)

Rl

Idea. We will have a countable set S and a subset Mg C M and we use
maps f: M — co(S), f(z) = (d(z,Ms))ses. Fix 6 > 1, for x # y in M,
o < d(x,y) < " for some n € Z. We will have ¢ € M (a centre). One of =
or y, say x, has d(c,z) > 6" /2. We will partition M \ Bsn 2(c).

Lemma 2.10. Let M be a separable metric space, A > 2,a > 0, N C M. Then
there exists subsets M7, M, ... of N such that

(i) Ve € N,3i,d(z, M;) < a
(ii) Yo € M, the set {i: d(z, M;) < (A — 1)a} is finite;
(iii) Vi, diam(M;) < 2Xa.

Proof. WLOG a =1 (just replace the distance d by d/a). M is separable, hence
so is N, so there exists a countable sets

Z C N, which is 1-dense in N,
Y C M, which is 1-dense in M.

WLOG Z C Y (replace Y by Z UY). Enumerate Y as y1,¥2,ys3,.... Let
M; = (Bk(yi) N Z) \ Uj<i M;. Then Vi, M; C Z C N, and Vi, M; C B)\(yi). So
diam(M;) < 2X. This shows (iii).

Given x € N, there exists ¢ such that y; € Z and d(z,y;) < Then
yi € Bx(y;)NZ C U;:1 M;. So there exists j <4 such that d(z, M;) < 1. This
shows (i).

Given € M, there exists ig such that d(z,y;,) < 1. If d(z, M;) < X\ — 1,
then d(yi,, M;) < A by the triangle inequality. For i > ig, y € M,;. Since
Yio € Uj<i, Mj and M;NU;<;, Mj = 0, we have d(yi,,y) > A so d(yiy, M;) > .
So {i: (x M) <A-1} Las at most io elements. This shows (ii). O
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Proof of Theorem 9, Assonad. Given separable metric space M and € > 0,
choose A > 2, > 0 such that 22;(1 4+ n) < 3 + € [first choose A so that

/\3—_)‘2 < 3+¢. Fork € Z, let a, = (1+n)"%. Fix a centre ¢ € M, let
My = M \ Bsy,, /2(c). Apply Lemma 10 to M, N = My, a = ay to get subsets
My 1, My 2, ... satisfying (i),(ii),(iii) in Lemma 10 with My ; in place of M;.

Let S ={(k,i) : k€ Z,i=1,2,..}. Forxz € M, let sz( ) =[(A—Dag —
d(z, M,;)] Vv 0. Let f(z) = (fk,i(ﬂf)) k,i)es-

We first prove that f(x) € ¢o(S). Since (A — 1)ar — 0 as k — oo, enough to
show that for any s € Z, T = {(k,9) : fr.(xz) > (A—1)as} is finite. For k > s, we
have fii(x) < (A —1)ar < (A —1)as so (k,i) ¢ T for all k > s and for all i. For
the other direction, since ay — 0o as k — —oco, Ir < s s.t. d(z,¢) < (3 + 1)a,.
For k <, d(z,c) < (% + 1)ax, so Vi,

3)\a
d(z, My, ;) > d(x, M \ Bsya, j2(c)) > “5°

—d(z,y) > (A = Dag,

so Vk < r, Vi, fr.(x) =0, so (k,i) ¢ T. Finally, by Lemma 10, for each k,
{i © fri(z) >0} = {i:d(z,My;) < (A—1)ag} is finite. So T C U;_,{i :
fri(x) > 0} is finite.

Now we have f: M — ¢¢(.5). This is clearly 1-Lipschitz. For the lower bound,
fix x # y in M and choose k such that

3ha < d(z,y) < 3Aai(1+n).

By the triangle inequality, both 2 and y cannot belong to Bsy,, /2(c), so WLOG
x € M. By Lemma 10(i), there exists ¢ such that d(z, My ;) < ag. So fri(z) >
()\ — 1)ak — ar = ()\ — Q)G,k.

Pick w € My ;, d(z,w) < ay. For any z € M}, ; we have

d(y, z) > d(y,z) — d(z,w) — d(w, 2) > 3 ap — a — diam(My, ;) > (A — 1)ay,
because diam(My, ;) < 2Aag. So d(y, Mk ;) > (A — 1)ax and fi;(y) = 0. So

1f (@) = fWlloe = [fri(@) = fri()]
2 ()\ — 2)ak
Ca(l+n)
"y 07

d
S (z,y)
3+¢

O

Remark. Here we are embedding into ¢j (S) = {f: S — Rt : f € ¢o(9)}.
Pelant showed that
sup inf dist(f) =3,
M f: M~>car
where the supremum is over all separable metric space M and the infimum is
over all bilipschitz embeddings f.
Kalton and Lancien showed that

su inf dist = 2.
up nf (f)

18



3  Bourgain’s Embedding Theorem IIT Metric Embeddings

3 Bourgain’s Embedding Theorem
For metric spaces X,Y, let
cy (X) = inf{dist(f) : f: X — Y a bilipschitz embedding}.
IfY = L, we write ¢,(X) = cr,(X), the L,-distortion of X. co(X) is called the
Euclidean distortion of X. By Proposition 1.1, ¢,(X) < ¢o(X) for any finite X.

Theorem 3.1 (Dvoretzky’s Theorem). Vn € N, Ve > 0,3N = N(n,¢), s.t. every
Banach space Y with dimY > N contains a (1 + €)-isomorphic copy of £%.

Remark. (i) N <exp(Cn/e?) for some absolute constant C.

(ii) ¢y (X) < co(X) for every finite metric space and every infinite dimensional
Banach space Y.

Aim. c3(X) < Clog|X]| for every finite X (Bourgain’s embedding theorem).

From now on we fix a metric space X with |X| = n. Let Px be the set of
all partitions of X [pairwise disjoint non-empty subsets of X whose union is
X]. For P € Px, the elements of P are called clusters. For € X, we let P(x)
be the unique cluster to which x belongs. A stochastic decomposition of X is
a probability measure ¥ on Px. Given A > 0, e: X — (0, 1], we say ¥ is an
(e, A)-padded decomposition if

(i) VP € Px if ¥(P) > 0 then VC € P, diam(C) < A [clusters can’t be too
big];

(i) Vz € X, ¥(d(z, X \ P(z)) > e(z)A) > 1.
Write supp(¥) = {P € Px : ¥(P) > 0}, the support of ¥.

Lemma 3.2. Let ¥ be an (¢, A)-padded decomposition of X, and let 1 < ¢ < oo.
Then there exists 1-Lipschitz map f: X — /; s.t.

(1) [If(@)]l, < A,Vz € X (technical condition);

(i) f(z) — fWll, = Ce(z)d(z,y), Vx,y such that d(z,y) € [A,2A), where C
is an absolute constant (I think C'= {-) (lower Lipschitz condition).

Definition. For Banach spaces X1, Xs, ..., for 1 < g < oo define (@i>1 Xi)
= a

to be the space of sequences (x;);>1 s.t. >_,5; [|z:]|? < co. This is a Banach

space with norm
1/q

o)l = | D lll®

i>1

Can also define (@i21 Xi) i I(@i)|l = sup;>1 [|z:]]. This has subspace (@221 Xi)
of sequences (x;);>1 such that ||z;|| — 0.
If X; = {, for all i, then (@m Xi) >,
= a

co
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Proof of Lemma 2. Fix P € supp(¥). Let C1,Ca, ..., Cpy(p) be the clusters of P.
Let Uy, ..., Ugm(r) be all possible unions of the C;. Fix 1 < j < 2m(P) and define
fPJ‘Z X —=R by

foi(w) = dz, X\ P(x)) NA ifx € Uj;
P 1o otherwise.

[Here A denotes the minimum.] We have fp;(z) < A for all z € X.
Fix z,y € X. If P(x) # P(y) then

0< fp;(@), fr;ly) < d(z,y).
If P(x) = P(y), then either z,y € Uj;, in which case
fr(z) =d(z, X\ P(z)) A A, z=2x,y,

or z,y ¢ U; in which case fp;(z) = fp;(y) = 0. Inall cases | fp ;(z) — fr;(y)]| <
d(z,y). So fp; is 1-Lipschitz.
Do this for each j, and define fp: X — Egm(m by

om(P)

frle) = (277 fp (@)

j=1

So for all z,
gm(P) 1/q

e@l, = [ 32 27" @ ey <A
j=1

and for all x, vy,

om(P) 1/q

Ifp(z) = e, = Z 27 | fp (@) = fri(y)l” < d(z,y).

So fp is 1-Lipschitz.
Finally define

X @ ) —at,

q
Pesupp(¥P) ¢

by
J(@) = (WP sp(@)) .

Pesupp(¥)
For all z € X

1/q
£ (@)l = (Z (P) IIfP(w)q> <A.

P

Similarly, f is 1-Lipschitz.
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Fix z,y such that d(x,y) € [A,2A). Let
E ={P csupp(¥) : d(z, X \ P(z)) > e(x)A}.

Fix P E. If x € Uj and y ¢ U; then|fp;(z) — fp;(y)| > d(z, X \ P(x)) >
e(x)A.
For 1 of values of j we have z € Uj, y ¢ U; (note P(z) # P(y), since
VC € P,diam(C) < A <d(z,y)). So
1/a
Ifp(x) = fr(y)ll, = Yoo 2P fpsa) — fr )| > e(x)AdTH

J,2€U;,y¢U;

Finally,

1/q
1f(z) = fW)ll = (Z U(P) | fr(z) - fP(y)||q> > e(x)A4~VIU(E),

PeE

and this is

Definition. Define the set of relevant scales to be
S(X)={leZ: 3,y € X,d(zx,y) € [2¢,2°T1)},
and R(X) = [S(X)|.

Example. If X is a connected graph with the graph distance, then R(X) <
[logy n].

Definition. A map f: X —» Y, given K, 7 > 0, is called a scaled-r embedding
with deficiency K if f is 1-Lipschitz and d(f(z), f(y)) > K~ 'd(x,y) for all x,y
such that d(z,y) € [r,27).

Proposition 3.3. Given K >0, 1 < ¢ < 00, assume V¢ € S(X),3fr: X — 4, a
scale-2¢ embedding with deficiency K. Then Cy(X) < KR(X)Y4.

Proof. Define f: X — (@ZGS(X) éq) =l by f(z) = (fe(x))ees(x). For all

1/q )
e, 17@) ~ SO = (Seesoo 1) — e)?) " < RE)Vd(2,y). So [ is
R(X)'4-Lipschitz. Given x # y, there exists £ € S(X) s.t. d(z,y) € [2¢,2+1).
Then

1 (@) = FW)l = | fe(z) = fe(y)ll = %d(:my).
So ¢, (X) < dist(f) < KR(X)Y4. O

Corollary 3.4. If V¢ € S(X) there exists an (e, 2¢)-padded decomposition of X
with €(z) > + for all z, then ¢,(X) < CKR(X)Y1 (1 < g < 00).

Proof. Lemma 2 + Proposition 3. O
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Remark. Actually, ¢,(X) < CKR(X)'Y/2//4, because c,(X) < c2(X).

Theorem 3.5 (Existence of a decomposition). For every ¢ € Z, 3(e, 2¢)-padded
decomposition of X with

ea) = |16+ 16108 (2170

Remark. Note €(z) > C——, so by Corollary 4, co(X) < C(logn)y/R(X).

logn7

Proof of Theorem 5. Fix ¢ € 7Z and set A = 2°. Fix an ordering < on X.
Consider a pair (7, ) where 7 € S, (the symmetry group of X) and a € (1, 1)
and 7, « are chosen uniformly at random and independently. To (7, «) there
corresponds an element P € Px with clusters

Cy = Baa(y) \ U Baa(2), y € X.
zm(z)<m(y)

We throw away the empty clusters. This gives a random partition, so we have a
stochastic decomposition.

Now we check this gives us an (e, A)-padded decomposition. Note that
diam(Cy) < 2aA < Afor ally y € X. Now fix v € X, t < £. Let B (B for Bad)
be the event that d(z, X \ P(x)) <t, i.e. By(x) ¢ P( ). The aim is to show
that P(B) < 1 for t = e(z)A. Then we would be done.

Note that B occurs <= By(z) ¢ C, for all y. Assume y € X and
By(z) N Cy # 0. Then By(z) N Baa(y) # 0. So d(z,y) SaA+t< £+ 48 <A
by the triangle inequality. So y € Ba(z). Let b = |Ba(z)| and y1(= ), y2, ..., Up
be the elements of Ba(x) in order of increasing distance to x.

Let y € X such that this necessary condition holds: d(z,y) < aA+t and 7(y)
is minimal in <. So By(z) is disjoint from U, ;)< r(y) C2 = UsLin(2)<n(y) Boa(z)
(by minimality). So By(z) C Cy <= Bi(z) C Baa(y)-

Now if B happens, then B;(x) ¢ Baa(y) and hence

A A A

—t>- ===
d(z,y) >alA —t 13 A

Let a = |Bays(x)|. Then Ba/s(x) = {y1,...,%a}. So the y above is y, for some
k with a < k <b.

So we proved that B C UZZLH_I E), where Ej is the event that d(z,yx) <
aA +t with 7(yg) is <-minimal with this property, and d(z,yx) > A —t.

Let Ij, = [d(z,yx) — t,d(z,yx) + ). Then E, = aA € I.

SoP(B) < S0 _ o P(E) = X001 P(Ex|aA € I)P(aA € ). IfaA € T,
then d(x,y;) < d(z,yx) <aA+tforl1 <j<k.

If in addition Ej occurs, we must have m(yx) < m(y;) for all j < k. So

IP(B) < ]P(ﬁ(yk) < W(yj),Vj < k|OzA S Ik)]P(OLA € Ik)

(m(yr) < w(y;),Vj < k)P(aA € I}) by independence of a, 7

IN

Il
M- 1+ T

El e
l>\2'i
[>

P TN
a

DN | =
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So we have our (¢, A)-padded decomposition as desired. O

Notation. For functions a,b on a set S and values in R™, a < b means 3
absolute constant C' such that a(s) < Cb(s) for all s € S.

Theorem 3.6 (Gluing Lemma). Let 1 < ¢ < 0o, K > 0. Assume V¢ € Z,3 a
scale-2¢ embedding fy: X — {, of deficiency K and with ||f,(x)| < 2¢ for all
z € X. Then c,(X) < K'=Y4(logn)/.

Let’s see how the Gluing Lemma implies Bourgain’s Embedding Theorem.
Corollary 3.7 (Bourgain’s Embedding Theorem). c2(X) < logn.

Proof. By Theorem 5, there exists (¢, 2¢)-padded decomposition for X, V¢Z where

¢(x) > Cppyye By Lemma 2, for all £ € Z 3 scale-2° embedding fo: X — s

with deficiency K < Clogn and ||f¢(z)|| < 2¢ for all x € X. By Theorem 6,
c2(X) < C(logn)'=2(logn)'/? = Clogn. O

Now we will prove the Gluing Lemma. But first we need some notation.
Notation. For z,y € X, ¢ € Z, let

x if |Bge(x)| > | B
w,y):{ [Bat ()] 2 | B 0)|
y otherwise.

To prove the Gluing Lemma, we need two further lemmas.

Lemma 3.8. Assume Y/ € Z there exists 1-Lipschitz he: X — £, (1 < g < 00)
s.t. [[he(x)]] < 2¢ for all z € X. Then there exists H: X — £, s.t.

(i) Lip(H) < (logn)'/9;
(i) Va,y € X,V € Z if d(x,y) € [2¢,2F1), then

IF(0) = )| = (g, [t OENE

1/q
) Ihe(a) — he(w)]]

Proof. Let p: R — RT be the function that is 0 on (—oo, %] then piecewise
linear connecting (%,1), (8,1) and (16,0) and then 0 on [16,+00). Note that
Lip(p) < 16.

—

1 8 16
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Fix t € {0,1,2,..., [logon] — 1}. For z € X let

R(,t) = sup{R : |Bg(x)| < 2'}.

This is 1-Lipschitz in x: given z,y € X, if [Br(x)| < 2, then |Br_a(a.4)(y)| < 2°
and so R(y,t) > R — d(z,y). Take sup over R, R(y, ) > R(x,t) — d(z,y).
Define
Hy: X — (@@) = (,
LEL q
by

Well-defined: Fix 2 € X. Then p (%) =0if 2=* > R(x,t) or R(x,t) > 2°+4,

Choose m € Z s.t. 2™ < R(x,t) < 2™ Then p(R(z t)) = 0 provided

2f=4 > omHl or 2m > 2044 50 if £ > m+ 5 or £ < m —4. So Hy(x) has < 8
non-zero coordinates. So it is in /.
Next we show H; is Lipschitz with Lip(H;) < 16 x 17. Note

I (P57 = (%52 o]

<[o (F52) =0 (B2 st + o (Z52 Yt - mto

1
= 17d(z, y).

Since both Hy(x), H:(y) have < 8 nonzero coordinates, we are done.

Now define
[logy(n)]—1

H: X — @

t=0

1%
QN

q

by H(z) = (Hy(2))[°8"~!. It’s clear that Lip(H) < (logn)'/9. This proves
(i)
To show (ii), fix ,y € X, choose £ s.t. d(z,y) € [2¢,2+1). Then

[Hi(z) = Hi(y)l| = [[he(x) = he(y)l - (%)

provided p ( (z, t)) =p (%) = 1 which holds if R(x,t), R(y,t) € [2¢73,2¢+3].
This will follow if |Bye—s(x)| < 2%, |Bgess(x)| > 2! (same for y). So (x) holds
for all ¢ such that

"€ [|Bae-a(@)], | Byrss (2)]) N [ Boe-s (y)] | Baews (y)]).

WLOG v,_3(x,y) = x. Since d(z,y) < 2*1, Byei1(z) C Boeys(y).
So (x) holds if
"€ [|Bye-s()], [Byess ().
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So

[1H () (ZHt )|>1/q

z 1/q
> (1og2 M) Ihe() — he(w)]]-

Lemma 3.9. Let 1 < ¢ < co. Then there exists H: X — £, such that
(i) Lip(H) < (logn)'/4;
(i) Va,y € X, VL € Z, if d(z,y) € [2¢,2+1) and

g ({200 ) <1,

then |[H(z) — H(y)|| Z d(x,y).

Proof. Fix t € {1,2,...,[logyn]}. Let W be a random subset of X where each
x € X is placed in W independently at random with probability 27¢ Let
P, be the resulting probability measure on P(X), the power set of X. So
Py(W) = 271WI(1 — 275)"=IWl for any W C X. Note that Ly(P(X),P;) = (2"
by

g (Pt(W)l/qg(m)wep(X) '

Note

q
WH ~
q

Define Hy: X — Ly(P(X),P;) = £2" by Hy(x) = (d(x,W))w. Then for all

z,y € X,
1/q
( —d(y, )| dIP’t(W)>
P(X

<d(z

[ He(z)

so H; is 1-Lipschitz.
Define H: X — ( [tog, 1 62”) o by by H(z) = (Hy(2))°®2 ™. Then

Lip(H) < (logn)'/9. This shows (i).
To see (ii), fix 2,y € X, £ € Z such that d(z,y) € [2¢,2T!) and

log, (:gz:gg:) <L
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Fix s € {1,2,...,[logyn]} such that 257! < |[Bye1(z)| < 2°. Note 2% >
|Bye—2(z)] > 252, Consider 4 events:

Ep = {W :d(z, W) <272} = {W : W N Bye—2(x) #
Ey ={W :d(z, W) > 21 = {W : W N Byeoa (z) =

2
2

E,={W:d(y,W) < 22#2} ={W: WQB%2272(y) # 0},
Fy = P(X) \Ey = {W : Wﬁngpz(y) = @}

0
0

Since d(x,y) > 2% Bye1(x) N Bsye2(y) = 0, and hence any of E, F; is
independent of F, F
Now we calculate the probabilities.

Py(E,) =1—(1-27%)Ba2@l > 1 - (127527 > 1714 >,
1 1

Pu(F) =1 (1= 27)/Pen @l > 1 (122792 > (1= 1) = 1 >0
So
[1H(z) = H(y)|| = | Hs(x) = Hs (y)|
1/q
([ latew) = d W e )
P(X)
(o hn)
> 2(5 3)q[p> ( _|_2(Z 3)q]p (E ))1/q
Z 2 > d(x,y),
as required. [Here we have used independence.] O

Proof of Theorem 6. Apply Lemma 8 with hy, = f,; to get H, which we will call
F: X — ¢, such that Lip(F) < (logn)'/4, and Vo,y € X,¢ € Z if d(z,y) €
[2¢,2¢41) then

IP@) - F)l = (tog, 2= o)

1/q
) 1fele) = Folw)]-

Remember | fo(z) — fe(y)|| > zd(z,y).
From Theorem 5 and Lemma 2, we get V¢ € Z a 1-Lipschitz g,: X — ¢4 such
that ||g¢(z)|| < 2¢ for all x and Va,y € X, if d(z,y) € [2¢,2¢"1), then

lge(@) — ge(w)]| 2 [16 1 1610g (M)] d(a.y).

Apply Lemma 8 with hy = g¢ to get H which we call G here such that (i)
and (ii) of Lemma 8 hold.

Let H be the function from Lemma 9. Define ®: X — (¢, &, & 4y)q = ¢,
where ®(z) = (F(z),G(z), H(z)). Clearly we have Lip(®) < (logn)'/?. Fix
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r,y € X with d(x,y) € [2¢,2¢F1) for some £ € Z. Let A = log, %
Se—3(x

assume yy—3(z,y) = . If A <1 then by Lemma 9, ||H(x) — H(y)| 2 d(x,y). If
A> 1 then |F(z) — P(y)]| > AV1 L d(z, y).

and

1/q

1+ A

1G(z) - Gyl 2 d(z,y).

Consider A > K and A < K to get K~'T/4d(x,y) lower bound. So dist(®)

<
K'~14(logn)'/a. O
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4 Lower Bounds on Distortions, Poincaré Inequal-
ities
In Section 3, we proved that co(X) < log|X]| for any finite metric space X. Is
this best possible? One might think that c2(X) < v/log|X].
Definition. For normed spaces X,Y we define the Banach-Mazur distance
d(X,Y) = inf{||T HT%H :T: X =Y is an onto isomorphism}.
[By convention inf ) = co.]

Note 1 < ||ToTH| < |T|||T7], so 1 < d(X,Y). Also d(X,Z) <
d(X,)Y) xd(Y,Z) for all X)Y,Z. [UT: X — Y, 5:Y — Z, then |ST| <
1SN IT)|.] If X 2Y then d(X,Y) = 1. The converse is false in general.

Aside. Let M,, be the class of all n-dimensional normed spaces (we identify
spaces that are isometrically isomorphic). On M, logd is a metric and M,, is
compact — the Banach-Mazur compaction.

Theorem (John’s Lemma). For any n-dimensional normed space X, d(X, ¢5) <

NG

Remark. (i) For all X,Y n-dimensional normed spaces, d(X,Y) <n. [Je >
0,Vn,diam(M,,) > cn (Gluskin)].

(ii) For a general finite metric space X, the analogue of dimension, is log |X]|.
This is to do with entropy. By analogy with John’s Lemma, one might

hope ¢2(X) < /log | X|.

Proof of John’s Lemma. We can think of X as R™ with some norm |-||. Let
K = Bx = {x € X : ||z|| < 1}. This is a symmetric, convex body. [Symmetric
means Vo € K, —z € K, i.e. K = —K. Body means compact with nonempty
interior.] Conversely, if K is a symmetric convex body, then K = Bx where
X = (R™|]) and ||z|| = inf{t > 0 : « € tK}. An ellipsoid is a subset
E C R" such that E = T(By;) where T: R" — R™ is a linear bijection.
Then n~Y?FE ¢ K ¢ E <= d(X,03) < /n (first inequality is saying
|T|| < /n, second inequality is saying ||77!|| <1, T: ¢5 — X.) John’s Lemma
is equivalent to: for every symmetric convex body K C R™, there exists an
ellipsoid, n~Y2E c K C E.

By compactness, there exists an ellipsoid E of minimal volume such that
K C E. We will show n~'/2E C K. By applying a linear bijection, WLOG E =
Bgn [by replacing K with 7~ (K)]. Assume for contradiction that n='/2E ¢ K.
Then there exists z € 0K = Sx such that ||z|, < ﬁ By Hahn-Banach, there
exists a linear functional f: R™ — R such that f(z) = 1 and |f(x)| < 1 for
all z € K. Let H = {x: f(x)+1}. Then z € H and K is between H and
—H. After applying a rotation, WLOG H = {z € R" : z; = 1} for some
¢ > y/n (as H contains a point with ||| < —=). We still have K C E = B

7
and K C {z: |z1| < 1} Let a > b >0, Egp = {o : a®z} + Y ,b%7 < 1}
which is the image of Byp under the map with matrix diagonal (%, %, e %) We

have vol(Eq, ;) = —a— vol(E). For z € K, a?z? + 1 ,b%a? = (a® — b%)a} +
Yoo Vg <

a2
(&

}bZ +b? (using K C E). Need a, b such that GQCEZP +b%2<1and
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ab™1 > 1. Then we would be done because vol(E, ;) < vol(E) and K C E,
which contradicts the minimality of vol(F).

For a given 0 < a < ¢, set b = /<=2, Then “;b +0b2 = 1. Let

c2—1
fla) =ab" ! = a( 2_“1 )"2 . Then f(1) =1

n—1 n—1
—a? T+ n—1 —2a [ —a®\ %

1 T e1\e-1
o2\ T 22 (n — 1)a?
c2—1 c2—1

n-1_q 9 9
& —a? 2 ct —na
c2—-1 )

Since ¢? > n, f’(1) > 0, there exists a > 1 such that f(a) > f(1) = 1. O

Definition. Let X,Y be metric spaces. A Poincaré inequality for functions
f: X =Y is one of the form

S ¥ > 3 b B, f@) ()

u,EX u,vEX

where a, b are X x X matrices, i.e. functions a,b: X x X — R of finite support,
and V¥ is an increasing function R™ — RT.

Define the Poincaré ratio
Zuﬂ) buvvq/(d( 7U))

U
, whenever this is defined.
Zu,v auy'U\I](d(Uﬂ U))

Proposition. Let 1 < p < oo, ¥(t) = tP. Assume X,Y are metric spaces
satisfying for some a, b the Poincaré inequality () above for all functions f: X —
Y. Then cy (X) > P, p0(X)'/P.

Pa,b,\lf (X) =

Proof. Let f: X — Y be a bilipschitz embedding [if there isn’t any, then
cy (X) = o0]. Then
Zu v bu v (f(u)7 (U)) > 1 Zu,v buyvd(u’ U)p
= T Gand(F(@), F@)) AU 5, Gt 0

where the first inequality is by (). Hence dist(f)? > P, w(X)?. Taking inf
over all f gives the result. O

f
f

Example. In /{5,
1 — wsl|* + w2 — zal® < |21 — wol|* + [lwe — w3]* + s — 2]+ ||zg — ]|,

for all 1,29, 3,24 € £5. This is a Poincaré inequality for functions Cy — /5.

Hence by the proposition above, ¢o(Cy) > 221'22 = /2. This can be achieved
by the obvious embedding. So ca(Cy) = /2.

To show that there is always a Poincaré inequality that gets arbitrarily close
to the distortion, we need Hahn-Banach separation theorems (see Section 4).
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Hahn-Banach Separation Theorems

To study Poincaré inequalities, we need to use the Hahn-Banach Separation
Theorems. This section is a digression from Metric Embeddings.

Let X be a real vector space. A functional p: X — R is positive homogeneous
if p(tx) = tp(x),Vt > 0,Ve € X, and subadditive if p(x+y) < p(z)+p(y),Va,y €
X. For example, a seminorm or a norm on X.

Theorem 4.1. Let X,p be as above. Let Y be a subspace of X, g: Y — R
a linear map such that g(y) < p(y),Vy € Y. Then there exists a linear map
f: X = R such that f|y =g and f(z) < p(z) for all x € X.

Proof. (This is similar to proof of Lemma 2.4). Let P ={(Z,h): Z < X, h: Z —
R linear,Y C Z,hly = g,h(z) < p(2),Vz € Z}. This is a poset with (Z1,h1) <
(Z3,he) < Zy C Z3 and ha|z, = hy. Note that (Y,g) € P so P # (). Given
a chain C = {(Z;,h;) :i € I} in P (so C is linearly ordered) with C' # (), then
Z =U;er Zi and h: Z — R is defined by hz, = h;,i € I gives an upper bound
(Z,h) for C. By Zorn’s Lemma, P has a maximal element (W, k). We show that
W = X, then we're done by taking f = k. Assume not. Fix g € X \ W and let
W1 = W +Raz. Fix a € R and define k;: Wi — R by ki (w+ Azg) = k(w) + A
for w € W, A € R. We need « so that ki (w + Azg) < p(w + Axg for all w € W
and A € R. Then (W, k) < (W1, k1), contradicting maximality of (W, k).
Since k; is linear and p is homogeneous, enough to get

k1 (w + o) < p(w + x9), ki (w — o) < plw — o) Yw € W.
So we need
k(w) + a < p(w + o), k(w) — a < p(w — xo) Yw € W.
So we need
k(z) —p(z — x0) < a < p(w+ x0) — k(w) Yw,z € W.

We need k(z)—p(z—x0) < p(w+axo) —k(w),Vw, z € W. Then a = inf,,cpw (p(w+
xo) —k(w)) will do. But k(z)+k(w) = k(z+w) < p(z4+w) = p(z—xo+w+xg) <
p(z — xo) + p(w + xo),Vw, z € W. O

Corollary 4.2. Let X be a real normed space.

(i) Y is a subspace and g € Y* then there exists f € X* s.t. f|ly = g and
I/l = llgll. [Hahn-Banach Extension Theorem)]

(ii) Given z9 € X, xo # 0, there exists f € Sx~ such that f(z) = |lzo].
[Norming functional for zg]

Proof. (i) Let p(z) = ||g|| ||z|| for z € X. Then p is a seminorm. We have
9(y) < p(y) for all y € Y. By Theorem 2, there exists a linear f: X — R
such that fly = g and f(z) < |\g| ||z| for all x € X. Apply this to —x
to get —f(z) = £(—z) < gl Jzll. So ()] < gl 2]l for all z € X. So

fe X and [[f|| <llgll- Since fly =g, I/ = llgl-
(ii) Define g: Y := Raxg — R by g(Azg) = A||xg|| for A € R. Then g € Y*
and |lg]] = 1. So by (i), there exists f € Sx~ such that f|y = g, and so

(o) = ||zoll-
O
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Remark 4.3. If Z is a complex vector space, let Zg be Z viewed as a real
vector space. Then for a complex normed space X, the map (X*)g — (Xg)*,
f — Re f is an isometric isomorphism. Thus (i) follows in the complex case.

Given a normed space X and a convex subset C of X with 0 € IntC, the
Minkowski functional of C'is pc: X — R defined by

pe(z) =inf{t > 0: z € tC}.

This is well-defined: given z € X, = — 0 € IntC, so 3n, = € C, ie. x € nC.
Example: If C'= Bx, then pc = ||-|| as € tBx <= ||z|| < t.

Lemma 4.4. Let X,C be as above. Then u¢ is positive homogeneous and
subadditive. Moreover,

{reX: pc(x) <1} cCC{reX:pc(zx) <1},

with equality in the first inclusion if C' is open, and with equality in the second
inclusion if C is closed.

Proof. For positive homogeneity, e need pc(tx) = tpc(z) forallt > 0and z € X.
For t = 0, we need pc(0) = 0. This is true since z € tC for all t > 0. If ¢t > 0,
then for any s > 0, tx € sC <= x € $C, so pc(tx) = tpc(x).

For subadditivity, fix x,y € X and let s > pc(z),t > pe(y). Then by
definition, there exists s', uc(zr) < s’ < s such that + € s'C. Then £ =

sao4 (1 - S;/)O € C, since C is convex. So z € sC. Also y € tC. Thus

s s’
ift’ = 5%+ ;54 € C. This shows pc(z +y) < s +t. Taking inf over all s, ¢
we get subadditivity.

If 1 > pe(x), then by above € C, showing the first inclusion. If z € C|
then pue(z) < 1 by definition, showing the second inclusion. Assume C is open.
If z € C, then since (1 4+ 2)z — z and C is open, then there exists n with

1+ %)x € C,ie z € 7570, s0 pc(r) < 15 < 1. Now assume C' is closed

+1
and pc(z) < 1. Then pc(f77) < A5 <1so fqz € C for all n € N. Since
1r — x and Cis closed, z € C. O

Theorem 4.5. Let X be a real normed space, and let C' be an open convex
subset of X with 0 € C. For zp € X \ C, there exists f € X* such that
f(z) < f(zo) for all x € C. (Note that f # 0.)

Proof. Define Y = Rz and g: Y — R by g(Azg) = Auc(zg). Then g is
linear and for A > 0, g(Azo) = Apc(xo) = pe(Azp), and for A < 0, g(Axg) =
Mic(xo) <0 < pe(Azg). By Lemma 4 and Theorem 2, there exists a linear map
f:+ X — R such that f|ly = g and f(z) < pe(z) for all x € X. Since zg ¢ C,
pe(zo) > 1. Sofor all x € C, f(z) < pe(x) <1 < pc(xg) = f(xo) [here we
used C is open]. Since 0 € C, C open, 3§ > 0 such that 6Bx C C. So f(z) <1
on dBx, but this is symmetric, so |f(z)| < 1. So f € X*. O

Remark. If Lemma 4, if C' is symmetric, then pc is a seminorm. If in addition,
C'is bounded, then uc¢ is a norm [we used this in the proof of Theorem 1].

Corollary 4.6 (The Hahn-Banach Separation Theorems). Let A, B be non-
empty, disjoint convex sets in a normed space X.
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(i) If A is open, then there exists f € X* and @ € R such that f(z) < a < f(y)
for all x € A, for all y € B.

(ii) If A is compact, and B is closed, then 3f € X* and a € R such that
sup, f < a <infp f.

Remark. In both cases, the hyperplane {z € X : f(z) = o} separates A and
B.

Proof. (i) Fixag € A,byg € B. Let C = A—B—ag+bg, xg = —(ag—bg). Then
C' is convex and open, 0 € C and zg ¢ C since AN B = ). By Theorem 5,
3f € X* such that f(z) < f(zo) for all z € C. So f(z —y + x0) < f(zo)
forallz € A,y € B, ie., f(z) < f(y) forall z € A,y € B. Let a = infp f.
So certainly we have f(y) > « for all y € B. Also, f(z) < « for all z € A.
Since f # 0, we can fix u € X such that f(u) > 0. For x € A, since A is
open, In € N such that z + Lu € A. Then f(z) < f(z+ Lu) < o

(ii) For x € A, d(x, B) > 0 since B is closed and x ¢ B. Since A is compact,
0 = infyead(x,B) > 0. Then A’ = {z € X : d(z,A) < §} is an open,
convex set with AN B = 0. [If d(z, A),d(y,A) < § then Ju,v € A,
|z —ull,|ly —v|| < ¢ and then Vt € (0,1),

(1 =)z +ty) — (1 = hu+ tv)[| <4,

(1 —=tu+tv) € A),so (1 —t)x+ty € A’]. By (i), 3f € X*,38 € R
such that f(z) < 8 < f(y) for all z € A'Jy € B. As A is compact,

supy f < B8 <infp f.
O

Poincaré Inequalities

Now we can show that Poincaré inequalities are worth studying because they
get arbitrarily close to the distortion of f.

Theorem 4.7. Let 1 < p < co and X be a finite metric space. Then
¢p(X) = sup (Paper (X)'/7,

where the sup is over all non-negative, non-trivial X x X matrices a, b for which
the Poincaré inequality

D awulf@) = FOlp = Y buu lf@) = F@I (%)

u,vEX u,veX

holds.

Proof. From Proposition 2, ¢,(X) > sup (Py p.tr (X))l/p. Taking a,,» = by, =1
for all u, v, (%) holds, and Py 4 »(X) =1, so if ¢,(X) = 1 then we are done.
Now assume 1 < C' < ¢,(X). Let X = {z1,...,x,}. Let

{1t~ 1) X > L} R
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where N = (g) From proof of Theorem 2.7, we know B is a cone, and in
particular, B is convex. Also B # () because 0 € B. Let

A= {(aij)1§i<j§n S RN s dr > O,rd(xi,xj)p < 01-3- < T'de(l'i,l’j)p,Vi,j} .

Then A is open, convex and non-empty since C' > 1. Since C' < ¢,(X), we have
AN B = (. By Corollary 6, there exists a linear map c: RY — R and o € R
such that ¢(§) < a < ¢(p) for all 8 € A, € B. We have ¢ = (¢;5)1<i<j<n
where ¢(0) = >2, <, ¢ij0i;. Since 0 € B, a < 0. By continuity, ¢(f) < «
for all § € A, and 0 € A, s0 0 < . Hence a = 0. So ¢(8) < 0 < ¢(¢p) for all
0 e fl,cp € B. Let Q5 = max(cij,O), bij = max(—cij,O). So Cij = Q5 — b” We

have
D cillf @) = fla)lly =0,
forall f: X = L, ie.

Do alf@) = faply = Y bigIf @) = fl)lly

1<i<j<n 1<i<j<n

forall f: X = L,.
Let

9. — de(a?i,atj)p if Cij > 0,
v d(l‘z, Z‘j)p if Cij < 0.

Then 6 = (0;5) € 4, so

0 Z 0(0) = Zaijopd(xi,xj)p — Zbl-jd(:ci,:cj)p.
ij

ij

Thus Pa,b,tl" (X) 2 CP. O

Hamming Cube

Recall H,, = {0,1}", which is a graph: x = (2;),y = (y;) are joined by an edge
< x; #vy; for exactly one value of i. So H,, is a metric space with the graph
distance d:

d(z,y) = Z |lzi — yil-
i=1

So H,, is isometrically a subset of /7.
H,, is also a probability space with the uniform distribution p: p({z}) = 27"
We think of {0, 1} as the field Fy. Then H,, is the n-dimensional vector space
FZ over Fo. So in particular, H,, is an abelian group.

Notation. Let (e;)?, is the standard basis of H, = Fy. For j = 1,...,n, let
rj: H, = R, rj(z) = (—1)%. This is the jth Rademacher function. Note that
T1,...,Ty are iid random variables on (H,, ) with {£1}-valued Rademacher (%)
distribution. For A C {1,...,n}, we define ws: H, = R, wy = HjeA rj. These
are the Walsh functions. These are the characters of H,, i.e. abelian group
homomorphisms H,, — T={z € C: |z| = 1}.

Lemma 4.8. The Walsh functions form an orthonormal basis of Lo(H,, 1).
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Proof. We have r? = 1, so for A,B C {1,...,n}, wawp = [Liearilienms =
HjeAABrj = wanp. Soif A = B, (wa,wa) = anw@d,u =1 If A # B,

by independence, {(wa,wg) = fH wanpdp = [Lieann fH" rjdp = 0. Al
ternatively, shifting is a measure-preserving transformation. Fix j € AAB,

Ju, wanp(@)du(z) = [ wanp(e+e;) du(z) = — [ wanp(z)du(z). We're
done as dim Lg(Hn, ) = 2. O

Definition. For f: H, — R, we let fq = (f,wa) = an fwadp for A C
{1,...,n}. These are the Fourier coefficients of f with respect to this orthonormal
basis. More generally7 for a Banach space X and f: H, — X, we define
fa = Ju, f(@walz)du(z), A C {1,...n}. Normally this would involve the
Bochner 1ntegral but here everything is finite, so this is just a summation.

Lemma 4.9. (a) For any f € Ly(H,, 1) we have

fl@)y=" > fawa(x), € H,,
Ac{1,...,n}

/ |f($)|2 du(x) = Z |fA|2, Parseval’s identity
Hr Ac{1,...,n}

(b) If X is a Banach space, then for all f: H,, — X we have

= Z waA(CL'), e H,.
AC([n]

If in addition X is a Hilbert space, then

/, 1@

Proof. (a) Follows from Lemma 8. (b) Fix ¢ € X*. Then

‘ Parseval’s identity.
AcC[n]

o(fa) = / o(f@)wal@) du(x) = 5o Fs  VYAC [n].
H,
So for any x € H,,, we have, by (a),

Z@O awa(@) = o> fawa(w)
A

This holds for all ¢ € X*, so by Hahn-Banach, f(z) =), fawa(z). True for
all x € H,.

If X is a Hilbert space, then WLOG dim X < oo. Fix an orthonormal basis
v1,...,u; of X. Then for 1 < j <k, let f;(z) = (f(z),v;). By above, taking
o(u) = (u,v;), fjA = (fA,vj> Then by Parseval in X, in Lo(H,, u), and in X
respectively,

[l e = [ S I = X515

n_]l j=1 A

=3 U Fa o)l =Yl fal
A A
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Definition. For each 1 < j < n, we define a difference operator 0; as follows.
For a Banach space X and f: H,, — X, let 0;f: H,, = X be defined as

0,h)@) = L)@
Lemma 4.10. (i) For 1 <j<n, AC [n],

Ojwa(w) = {OwA(x) j Z j

(ii) For a Banach space X and f: H, — X,
~ _|—fa jeA
0;f 4=
i a {0 jé¢ A
(iii) If X is a Hilbert space, then for f: H, — X,

Z/ 105 f @)II* dpa(x) = Y |All| ful .
j=17Hn A
Proof. (i) We have
ri(z+ej) = {n(gj) J=i

i) J# i
So
N . N —wy(z) jeEA
wA(x—Fe])—g ,L(a:—&-e])—{wA(x) iy
Hence result follows.
(ii) This is integration by parts:
@h1a= [ @) @walz)dulz)
Hy,
1 1
=5 ), St epma@nt) - 5 [ i )

1
=5 ), f@wa e du@ 5 [ @@ dutr)
— [ 1@ duto)
H,
J-ja jeA
o jé A
(iii) We use Parseval:

Z/ 0,0 i) = 3 STl

=@l
A g

= > lAllfal?,
A
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as required. O

Theorem 4.11 (Poincaré inequality for Lo-valued functions on H,,). Let e =
e1+er+...+e, =(1,1,..,1). Then for all f: H,, — Lo, we have

/Hn||f(33 +e) = f(@)lI* du(z) < 4; /}LLL||(3J‘JC)(JU)||2 dp(z).
Proof. For A C [n], wa(z +e) = (—=1)!*lwa(z). So

/ 1@+ o) — F(@)]] dula)
H,

:/Hn

—4 /H S fawa(@)| dulx)

n 1| A:]A| odd

=4 Z | Fall? (by Lemma 9)
A:|A| odd

<4 |Allfall?

1|

=13 /H @)@ o).

2
du(xz) (by Lemma 9)

D fawalz+e) =Y fawa(w)
A A
2

Corollary 4.12. c3(H,) = /n.

Remark. |H,| =2", so c2(H,) = +/log|H,|. Compare with the upper bound
co(H,) < log|H,| in Bourgain’s embedding theorem.

Proof of Corollary 12. H, C ¢3 in the obvious way which gives co(H,) < y/n.
By Proposition 2, a lower bound on c¢o(H,,) is obtained from the Poincaré ratio

Ju, d(z + e, 2)* du(x) n2
n d(z+e;,x)?
Ay an % du(z) ™

so co(Hyp) > /n. O

From now on, think of H,, as the n-dimensional vector space F5 over Fs.

Theorem 4.13. For every f: F5 — Lo we have the Poincaré inequality:

g M1 0001 00 < s - [ 10310 i),
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Proof. Without loss of generality, after replacing f with f — f@w@, can assume
fo =0 (recall wy =1). Then by Parseval,

L= [ @I+ W - 200@). /) dua) duy)

=2 LIl -2 / g < / @) du<m>,f<y>> d(y)

—QZIIfA||2*2/<f@ £(9)) duy)
NN
A

By Lemma 10,

/ 105 f (@)1 dpa(x) Z Al fall® = min{|A] : A # 0, fa # O}X:IIfAII2

O

Definition. A linear code of F} is a subspace C of Fy. We let d(C) =
min{d(z,0) : = € C,xz # 0} = d(0,C \ {0}). For z = (z;),y = (y;) in
F%, let (z,y) = > ., x;y; (operations in F%). This is a symmetric bilin-
ear form, but (z,z) = 0 does not imply 2 = 0. For a subset S C F%, let
S+ ={reFy:(z,5)=0,Vs € S}

Linear Codes

Lemma 4.14. For a linear code C, dim C + dim C+ = n and C++ = C.

Proof. Let m = dimC' and vy, ..., v, be a basis of C. Define §: F5 — F3' by
0(z) = ((z,v;))]~,. Then kerf = C+ and so n = dimC* + dimim6f. We
need 6 to be onto. For 1 < j < m, let f: Fy — Fy be a linear map such that
f(vi) = &;; (Kronecker delta). Let y; = f(e;) for 1 < j < n and y = (y;).
Then f(x) = Z;;l z;f(ej) = (z,y), so 0(y) = (f(v;))}=; = ith standard basis
vector of FJ'. So n = dim C+ + m = dim C* + dim C. For the final part: from
definition, C ¢ C*++, and dimC++ =n —dimC+ =dimC,so C =C++. O

Lemma 4.15. There exists 6 € (0,1),IN € N,Vn > N,(m + 1)() < 2"/8
where m = |dn].

Proof. First choose § € (0, %) such that §(2 + log(2)) < 10§2. Then choose
N € N such that [6n] > %2, Vn > N. Let n > N and m = [dn]. If m = O then
n(n—1)(n— 2) .(n—m+1) < nm _ For

we are done, so assume m > 1. Then (:@) =
the denominator use log(m!) = Z 1log(y) > fl log:cdx = [zlogz — x]l =
mlogm—m+1> mlogm—m. So (m) < (m) and (m+1)(") < (m+1)(22)m,
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Now

log ((m +1) (;)) < log(m + 1) + m(1 + log(n/m))

< m(2 +log(n/m)) (logz <z —1,Vz > 0)
< on(2 +log(2/9)) (%L <m=[dn]| <In)
< IOan.

Thus (m +1)(]) < 2"/8. O

Lemma 4.16. Ja > 0,Vn € N, 3 linear code C in F3 with dimC > % and
d(C) > an.

Proof. Let 6, N be as in Lemma 15. If 1 <n < N, choose any C with dim C' > 7.
Then d(C) > 1 > %n Now let n > N. We show there exists a linear code C in
F% such that dimC' > % and d(C) > én. So a = min(s;,4) will do.

We choose C' greedily. Assume that for some k, 1 < k < % we have a linear
code Cy with dim Cy = k and d(Cy) > on. For k = 1 this holds. We seek a
suitable € F§ \ C}, such that putting Cy41 = span(Cy U {z}) = Cy U (Cy + ),
we have d(Cr4+1) > dn. Once we find such z, we continue inductively. Taking
C = Cfp 47 will complete the proof.

We estimate from above the number of unsuitable vectors z. For v € Cy,

Hz : d(v+z,0) < dn}| = |{z:d(z,0) < on}|

n

where m = [dn]. Note in the range 0 < ¢ < Z, (%) is increasing, and § < 3. It
follows that

H{z € Fy : Jv € Ck,d(x +v,0) < dn}| =

U{a:EIF”' x+v,0) < dn}
veCy

< 2k(m—|—1)<;>.

If 2°(m + 1) () < 2™ — 2% then there is a suitable x, i.e. we need (m+1)() <
27—k _1. Now 2% —1 > 237/4 _1 > 2/8 50 we are done by choice of §, N. O

From now on, C' will be an arbitrary linear code in F5. Let ¢: F§ —
F2 /C* be the quotient map. Let i be the image measure induced by p and
q: i(E) = p(q Y (E)). Let p be the quotient metric on F3 /C*: p(q(x),q(y)) =
diz+C*,y+CH) =d(z —y,C*) = min,cor d(x — y,v).

Lemma 4.17. For every h: F3/C*+ — L' and for every A C [n] with A # ()
and |A| < d(C) we have f4 =0 where f =hogq.
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Proof. Let v=73,_, ;. Then v # 0 since A # () and d(v,0) = |A\ < d(C)¢ So
v ¢ C = Ctt (Lemma 14). So Jw € C+ such that (v, w) # 0, i.e. (v,w) = 1.
Now

fa= [ Saua)dute)
[ Jo e+ w)dute)
(translation invariance of 1)
- Mﬂmigm@+wmmm
(weClwf®+wﬁﬂmx+w=hM@=f®D

/f [0 o

F@) ()" wa(z) du(x)

Fp
e _fA'
Hence fA =0. O

Theorem 4.18 (Poincaré inequality for Li-valued functions on F§/C*t). For
every h: F3 /C+ — L; we have

1A (u) = h(V)ll,, di(w)dp Z / 10;h(w)l|z, dfp(uw) ()

(Fg/CL)? =lpp it

where
h(u+ g(e,)) = h(w)
2 )

Oih(u) =
and u € F} /C+.

Proof. Let f = hogq. Then (%) is equivalent to

n

/'Hﬂm—f@mhd<>dm> ;m3§j/wyﬂmm~mu»

F3 xF3 I=lgn

From (proof of) Proposition 1.7, there exists a map T: L; — Lo such that
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ITa —Tb| 1, = [la — b]|;/*. Now

/ 1£(2) — F@) 2. dula) du(y)

F2 XF2
= [, 1T = TSI, dute) ety
gmm{l TAZET #O}Z [ 175, duta) - (Theorem 13
<5 ; [ 1o, dute (Lemma 17)
-5 ; JRCEIARTE

since 0T f(x)|%, = |\Tf(x+ej);Tf(x)|\i2 _ ||f<ac+e,~>4—f(ac)||L1 = 10,£(@)| L.

O

Lemma 4.19. 38> 0,Vn € N, if dimC > % then Vx € Fy,
1

wly : plaw,qy) = Bn}) = 5.

Proof. Let n,§ be as in Lemma 15. WLOG N >

1<n <N, u({y: play,0) > £}) = p(F3 \ C*) =
n L n n—1

dimCt =n—dimC <n-1,so 2 ;Lc | > 2 =2 = 1. Now let n > N. For

v € C*, consider

wedew <omi< 3 (7)) <men(l),

0<t<dn

8. WLOG z = 0. For
n L
2 _QLC |, From Lemma 14,

where m = [dn]. So
{y:3v € O+ d(y,v) < dn}| = {y : play.0) < on}|
SQdImCL(m_Fl)(n)
m

< 23n/42n/8 < -9

N —

(Here we use n > N > 8). So pu({y : p(qy,0) > én}) > 1. So = min(J, 3;)
works. O
00

Theorem 4.20. 3n > 0,3 sequence (X,,) of metric spaces such that | X,,| —
and ¢1(X,,) > nlog |X,|.

Remark. Recall ¢2(X) > ¢1(X) for any finite metric space. So Theorem 20
says that the upper bound in Bourgain’s Embedding Theorem is best possible
up to constant.
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Proof. By Lemma 16, for every n there exists a linear code C in F§ with

dimC > 2 and d(C) > an. Let X,, = F3/C* with the quotient metric p. By
. 1 .

Lemma 14, |X,,| = 27~ d4mC™ — odimC > 9n/4 _, 5 By Proposition 2, a lower

bound on ¢;(X,,) is given by the Poincaré ratio corresponding to the inequality

in Theorem 18. Thus

Jx. xx, P(u,v) dfi(u) dii(v)
% Z;LZI an P(u+q2(6j)7u) dji(u)
Sy P(a(@); a(y)) dp(z) dp(y)
iy St Jeg Pl ), a(x)) dpa(z)”

C1 (Xn)

Y

It’s clear that the denominator < WHC) < ﬁ = i By Lemma 19, for each
x € Fy, fFS p(q(x),q(y)) du(y) > % Hence the numerator is at least 62—” Thus
c1(Xn) > %/izaﬁnZaﬁlogQ | X0 O
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5 Dimension Reduction

Theorem 5.1 (Johnson-Lindenstrauss Lemma). There exists a constant C > 0

such that Vk,n € N, Ve € (0,1), if k > Ce 2 logn then any n-element subset of
{5 embeds into ¢§ with distortion at most 1%

Remark. In the 90’s there was a sudden explosion of citation for this result,
because the computer scientists realised there are many applications in compress
sensing etc. For applications, see Matousek’s lecture notes.

Idea. We will take a random linear map T': ¢§ — 5 and show that for each
x € 05, we have (1 — €)||z||2 < ||Tzll2 < (1 + €)||z|l2 with high probability. It
follows that, given z1,...,x, € {5, we have

(1= Olles — alle < T — Tyl < (14 Ol — a2
with positive probability. In particular, there exists a suitable map of {x1,...,2,}
to (5.

Lemma 5.2. Let k,n € N,€(0,1). Define T: /% — ¢5 by the k x n matrix
(ﬁZij)ij where the Z;; (1 <i<k,1<j <n) are iid random variables with
Z;; ~ N(0,1). Then there exists a constant ¢ > 0 (independent of k, €) such
that for each 2 € 5, we have

P((1 = )lalls < [ Tall2 < (1 +)llzll2) = 1 - 27",
Proof of Theorem 1. We choose C > 0 sufficiently large so that if k,n € N, e €

(0,1) satisfy k > Ce=2logn, then 1 — 2e—cke” > 1 — ;. Clearly, C' depends only
on c. Now let T': /5 — (% be as in Lemma 2. Then for each = € (3,

1
P((1 = 9llalls < ITalls < (1+ follz) 21— .
So given x1,...,x, € fo, WLOG z1,...,2, € £§ and
o n\ 1
P(¥ij (1-€)zi—zlls < |Twi=Ta;ll < (1+6)zi—zl2) 2 1= (1) = > 0.
So there exists a linear map 7' that has }f:—distortion on {z1,...,x,}. O

Recall that if Z ~ N(0,1) then Z has probability density function (pdf)
o 2N 7y, ..., Zy areiid ~ N(0,1) and z € £3 with ||z]| = /S, 2 = 1,
then >°1" , 2;Z; ~ N(0,1).

Lemma 5.3 (Tail Estimates). Let X be a random variable with EX = 0.

Assume that forQSome C > 0,up > 0 we have Ee*X < €% for < u < ug. Then
P(X >t) <e /4 for 0 < t < 2Cuy.

Proof. For any u > 0,
P(X >t) = P(e"X > e") < e “Re"X (Markov’s inequality)

2
< g uttCu (provided 0 < u < ug)
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If 0 <t < 2Cwug, then we can take u = t/2C' to obtain

+2
tic = e~

Q‘”w
Bl
&%

P(X >t) <
O

Lemma 5.4. Assume Z ~ N(0,1). Then there exists absolute constant C, uy >
0 such that REe(2*-1) < € and Eev(1—2%) < eC* for 0<u<ug.

Proof. This is straightforward computation.

EeY u(l— Z 1—2? 71 /de

"

_u —5(2u+1)x2d
= e e X
V2 Jr
1
= 7—/6_3’2 dy
V2u+ 127 Jr

e
 Vu+1

u—13 log(2u+1)

(put y = v2u + 1x)

=€

2 3
— ot +0(u”)

using log(1 +z) = — 3222, &8° A similar computation shows Ee*(2°~1) <
eu2+O(u3). 0

Proof of Lemma 2. Fix © € £5. WLOG assume ||z||2 = 1. Then
1 n
(Tx)i = —=Y ;Zi, 1<i<k.
Vi &
Let Z,’ = Z;‘lzl l‘jZ,’j. Then Zl, ey Z’n are iid with Z,L' ~ N(O, 1) Then

=i

Let W = ﬁ Zle(Zf —1). Then EW =0 and varW = 1. Fix C,ug as given
by Lemma 4 and WLOG 2cug > 1. Then

E||Tz|? =Y E|(Tz);

w\H

eV Hef( Zi=1) (by independence)
i=1
k
< H eCu/k (Lemma 4)
i=1
= 0w (if 0 < u < Vkug).
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Slmllarly E(equ) _ Hf:1 eu/sqrtk(lef) < €CU’2. So IP(W > t) < 67t2/4c’
P(W < —t) < e~ t/4C for 0 <t < 20ugVk (note 2Cug > 1). So

P((1 = llzl2 < |Talls <(1+ )]
P

k
ZP(l—eS;;ZfS1+e)

1
1—e<—kw+1§1+e)

O

Aim. Our aim is to prove that dimension reduction as in JL. Lemma does not
work in /4.

Theorem 5.5. For all n € N there exists a subset X of /1 of size | X| =N >n
1
such that if X embeds into E’f with distortion < D, then k > n3202.

We introduce the diamond graphs D,, n = 0,1,2,...: Dy consists of 2
vertices joined by an edge. D, 11 is obtained from D,, by replacing every edge zy
in D,, with new vertices u,v and edges zv, vy, zu,uy. Note Dy = K5, D1 = Cy.

r—Y

I
T Y
~
u

Let E, = E(D,),V, = V(Dy). Then |E,| =47, |[Vu| =2+ 2(1 +4+ - +
4n=1) = 2(4" + 2). Observe that |V,,| < 4™ for all n > 1.

Let d, = dp,,. For every n > m > 0,Vz,y € Dy, dp(z,y) = 2" "dp (2, y).

We define sets A,, for n > 1 of “non-edges” as follows: For n > 1, D,, consists
of copies of D; = Cy of the form xyuv where xy € E,,_1 and u,v € V,; \ V;,_1.
Let A,, consist of all pairs {u,v}.

Let’s label the vertices as follows. Do = ¢r for left and right, D = £brt where
b for bottom and ¢ for top. Write D,,(¢r) for D,,. D,41(fr) consists of 4 copies
of Dy: Dy (t8), Dy(tr), Dy (bL), Dy (br). If e, f are two of the edges t¢,tr, bl, br,
then V(D,(e)) NV (D,(f)) =en f.

Remark. d,(¢,r) = 2" for all n > 0, and d,,(¢,b) = 2™ for all n > 1. For every
T € Dy, dn(f,ﬂi) + dn(xar) =2"

Lemma 5.6. For all n > 0, D,, embeds into é?n with distortion < 2.

Proof. Let fo: Do — Hj, C ¢¥ be such that fo(¢), fo(r) are neighbours in Hj,.
So fo is isometric (e.g. k=1=2° fo(¢) = (0), fo(r) = (1)). Assume f,,: D,, —
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Hjon C 052" has been defined. Then we define frna1: Dny1 — Hyontr C gkt
as follows: let @ € D, we let fr11(x) = (fu(z), fu(x)). If 2y € E, and u,v
are the corresponding new vertices in D,y1, we let fr11(u) = (fu(2), fn(y)),
fn-l-l(v) = (fn(y)v fn(x))

Observe that for @,y € Dy, || fus1(2) — far1 (Wl = 20 fu(@) — Fuly)ll1. So
Vi > m > 0,92,y € Dy, [fa(®) = Fa)lls = 2 fon(2) = fn ()]l

First show that Vn > 0,Vzy € E,, || fn(x) — fu(y)|l1 = dn(z,y) = 1. Proof by
induction on n: n =0 (and n = 1) is clear. Now assume n > 1. An edge in D,
is of the form zxu, where dzy € E,,_; and u, v are the corresponding new vertices
in Dy Now [[fa(@) — fa(@)lI= I1(Fa1 (@), fa1(2)) — (Fuor (2): Fas ()ll1 =
| frne1(z) — fn—1(v)|li= 1 by induction hypothesis. It follows that f, is 1-
Lipschitz for all n > 0. To see this, given z,y € D, there exists a path
T =20,%1,L2,--.,Lm =Y in Dy, with m = d,(z,y). Then ||fun(z) — fn(y)|1 <
S @) = Fa(@ien)ll = m = du ().

Claim. Vn > 0,Vz,y € D,, an(x) - fn(y)||1 > %dn(I,y)-
Note that Vn > m > 0, if zy € E,,, then ||f,(z) — fn(¥)]l1 = 2" || fin(z) —
fm(y)lh = 2™ =2"""d,, (z,y) = dp(z,y). In fact, it is enough if ||, (z) —

W)l = dm(z,y).

This claim is proved by induction on n. Note that fy, fi are isometric.
Assume n > 2 and the claim holds for n — 1. Fix z,y € D,,. Recall that D,
consists of 4 copies of D,,_1. We have 3 cases.

Case 1: z,y in the same copy, WLOG z,y € D,,_1(¢f). Define go: Do(tl) —
Hsy, go(u) = fi(u). Then define g,,: D,, — Hamj inductively starting
with gog in the same way as f,, is defined from f. Then by easy induc-
tion, gn—1 = fulp,_,(t¢)- By induction hypothesis, || fn(z) — fu(y)l1 =
1gn—1(2) = gn1(W)1 > 3dp,, ey (x,y) > 5dp, (,y). [In fact, the last
inequality is an equality, because the four copies of D,,_1 only meet at
£,b,r or t.]

Case 2: z,y are in neighbouring copies, WLOG z € D,,_1(t{),y € Dy,_1(tr).
Now | fu(@) = fu@)Il = [1£n(6) = fa(r)lls = £ (6) — ful@)|li = [ fn(y)
fn("")”l = 2n_1Hf1(£) - fl(r)” - dn('raé) - dn(yvr) = 2" — dn(x7€)
dn(yar) = (2n71 - an,l(tZ) (1‘,6)) + (2n71 - an,l(tr)(yﬂn)) = dn(xvt) =+
dn(t,y) = dn(z,y).

Case 3: x,y are in opposite copies, WLOG z € D,,_1(tf),y € D,,—1(br). Then

dn(z,y) = (dn(a:,f) +27 1 4 d,, (b, y)) A (dn(x,t) +2" 7 4 d,, (r, y)) <27,

since dn <$7 g) +dn(b7 y) +d7l (:E? t) +dn (T7 y) = 2". Assume WLOG dn(l‘, t) +
dn(y,b) < dp(2,0) + dyp(y,7). So dy(x,t) + dp(y,b) < 2"~1. Then by the
triangle inequality and the fact that f, is 1-Lipschitz,

1fn (@) = Fa @)1 2 [1Fn () = fa®)lls = [ (@) = Fa (Il = [1fa(y) = fu (01
>2" - dTL(xat) - dn(y’b) > 2n! > %dn(xay)
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Recall that for all x1,x2, 3,24 € {2 we have
21— z3[13 + [[22 — zall3 < [lor — @23 + |22 — 2af3
+ |3 — zall3 + [lza — 2113,
also called the Short Diagonal Lemma.

Lemma 5.7 (Short diagonal Lemma in L,). Let 1 < p < 2. Then V1,2, 23,24 €
L,, we have

2y — @32 + (p — 1)@z — 2al|2 < llwy — 222 + |22 — 23]
+ |lzs — $4||;2) +||zs — $1||12,,

Proof. WLOG x1,z9,23,24 € K’; for some k (k = 6 will do by Theorem 2.7).
Lemma 7 can be deduced from the following;:

2+ ylly + lle — yl7
2

2[5 + (» = Dlyll; < Voy et (%)

To see this, consider two parallelograms:

T4 —— To + Ty — X1 Ty — Tog + Ty — X3

/S S S

Tl —— T2 3 —— T2

For the first parallelogram, set * = x3 + x4 — 2x1,y = x4 — 2. For the
second parallelogram, set = x9 + x4 — 223,y = x4 — x2. Apply (%) for both
parallelograms:

22 + @4 — 221|124 (p — 1)||lw2 — 4]} < 2llag — 21| + 2/|w — 2412,

lz2 + @4 = 2a3]15 + (p = Dllwz — 2ally < 2|24 — @3]} + 2l|z2 — @33
We take average of these 2 inequalities and use convexity of z — ||z||2 to get

o1 = 3]y + (p = Dz — 24l

To + Ty — 223 21 — X9 — X4 2
2 2

+(p = Dz — a7

p
g + 24 — 223]|2 + |22 + 24 — 2212
2

[z — @l + o2 — 23|

+(p = Doz — 24l

IN

+ |lzs — $4||;2) +||zs — $1||12,,

as required.

To prove (x), use the fact that for a,b > 0, (#)1
q € [1,00). So (x) follows from

/a

is increasing in

2
nx+mw+|x—mw>/p

ol + = Dl < .
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Define
L(t) = llz]2 + (p — DIyl 3¢,

z+ ty|2 + ||z — ty||2\ 2P

| —

k
72 | + ty|P + | — ty]P), teR.
i=1

We need that L(1) < R(1). We have L(0) = R(0) = ||z[|2. From now we assume
x # 0,y # 0. Next we differentiate.

L'(t) =2(p = Dlyll5t

2
R(t) = SH(H)» (1)
k
H'( gz i + tys| P~ sgn (@ + ty)ys — |z — tyi|P  sgn(z — tys)yi).
1=1

Note that L'(0) = R'(0) = 0. Differentiate again:
L"(t) = 2(p = Dllyll.

Let I = [k]\ {¢ € [k] : 2; = y; = 0}, where [k] = {1,...,k}. Note I # 0 as
x,y # 0. For ¢ € I, there is < 1 value of ¢ such that x; + ty; = 0. So there exists
dissection 0 = tg < t1 < --+ <ty =1 of [0,1] such that z; +ty; #0,Vi € I,Vt €
Uj=y(tj-1,t5). For such t, we have

RU(t) = % (]2) - 1) H(t)» 7 (H' (1)) + %H(t)%_lH”(t)

> 2H()F ()

DI

2 4p _ _
H{(t)? 12( p=1)> (lmi+ tyil? 72y} + |z — twil”%07).
el

We now use reverse Holder’s inequality: suppose 0 < r < 1 and % + % =1, s0

s = i, b; € R, b; # 0, we have

1/r 1/r
(Z |ai|r> = <Z |aibi|r|bi|r> (take p= %7(1 =7 ir>
il il
—1/s
< (z |aibi|> (z w) ,
il iel
SO

) () <

i€l i€l el
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Apply this with b; = |z; £ty P72, a; =y, r =5, s = ﬁ, we have

2/p ”?%2 1
) > B (zw) (zmw) +<zxi—w)

i€l icl icl

2 lz + tyl5=2 + [l — ty5—>
> H(t)» 1(pl)||y||§'2( - -

2

p—2
z+tyllP + ||z —ty||P\ P .
> H(t)r " (p — 1)2||y||? (” yllp - | y”P) (r = rZ5° convex)

=2(p—Dllyll7 = L"(t).

So for each 1 < j <m, (R—L)”" > 0on (tj_1,t;), so (R — L)’ is increasing on
[tj—1,tj]. So (R — L)’ is increasing on [0, 1] and hence (R—L) >0on|0,1]. So
R — L is increasing on [0, 1] and hence R(1) — L(1) > 0. O

Corollary 5.8. For 1 <p<2,n €N, ¢,(D3) > +/14+ (p—1)n.

Proof. D, consists of copies of D1 = zuyv, where zy € FEp,_1,uv € V;, \ V1.
Apply Lemma 7 for a function f: D,, = Ly:

1 @) = F)lI5 + 1 @)= F @I+ 1F @) = FOE + 1f(v) = F@)7
> |[f(2) = FWp + (0 = DILf(w) = F);.

Sum over all copies of Dy in D,,:

o IF@—fwlz = Y @ =W+ -1 Y @)~ fW;

rzyck, zyeE, 1 TYEA,

Y

Y

1P = r@lp+@=1 > @)~ Ol

Ty€A;U---UA,

We bound ¢, (D,,) from below using the corresponding Poincaré ratio. For zy €
Ag, dn(x,y) = 277 kdy(z,y) = 2n k1 and |Ax| = 471, So d,,(¢,7)? +

" 1/2
(p o 1) 2221 4k714n7k+1 — 4n(1 + (p o 1)TL) So Cp(Dn) > (4 (1+(P*1)n)) —

4n

14+ (p—1)n. O

Lemma 5.9. Given k > 2, the identity i,: £} — é’; where p = 1 + @ has
distortion at most 2.
Proof. Forz = (x;)f_, € R¥, by Holder, ||z]|, < [lo]ly = S0, || < &1 =1/7|||,.

1/ logy k logo k

Now k1™ 1/p — — kTF1/loga k — klogz R = Qlomp T < 2, 0

Proof of Theorem 5. Let n € N. By Theorem 6, there exists an embedding
f: D, — £; of distortion at most 2. Set X = f(D,). So |X| = |D,| < 4™.
Assume g: X — (§ has distortion at most D. Then ipgf: X — (8 p=1+ e
has distortion < 4D (Lemma 9). By Corollary 8, 4D > /1 + (p — 1)n, and

1
16D? > gs & 2 lglgfg‘jfl- So logy k > 105221:‘))2(' and hence k > |X|3202 . O
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6 Ribe Programme

Definition. Given Banach spaces X,Y, we say X is finitely representable in Y
if VE C X,dim FE < oo, VA > 1, 3F C Y such that d(E, F) < A, i.e. there exists
a linear bijection T: E — F such that | T|||| T < A.

Example. (i) Every X is finitely representable in cj.
(ii) ¢5 is finitely representable in every co-dimensional X [Dvoretzky].

Definition. X is crudely finitely representable in Y if IA > 1, VE C X, dim F <
oo, IF C Y, st. d(E, F) < A

Definition. A local property (or local isomorphic property) of a Banach space
is one that depends only on its finite-dimensional subspaces.

Definition. For 1 < p < 2, we say X has type p if 3C > 0, Vn € N,
Vay, ..., € X, B0, ez < C (X0, |@il[?) /P, Here, €, ..., e, are {£1}-
valued independent Rademacher (1) random variables.
For 2 < ¢ < o0, we say X has cotype ¢ if 3C > 0, Vn € N, Vz1,..., 2, € X,
1
E|Y7 ezl > % o i) /1 For g = oo, RHS = %maxlgignﬂxiﬂ.

Example. Every X has type 1, cotype oo; f5 has type 2 and cotype 2 with
C=1

If X is crudely finitely representable in Y and Y has some local property,
then so does X.

Theorem 6.1 (Ribe’s Theorem). If Banach spaces X,Y are uniformly homeo-
morphic then X is crudely finitely representable in Y and vice versa.

Proof. Omitted. O

Remark. Local properties depend only on the metric structure of the Banach
space, not the linear structure.

Aim. Aim for the Ribe programme:
(i) Find metric characterisations of local properties of Banach spaces.
(ii) Find metric analogues of local properties of Banach spaces.

Our aim is to find a metric characterisation of super-reflexivity.

Definition. Recall that given a Banach space X, there is an isometric isomor-
phism X —— X** 2 +— &, where &(f) = f(z). Easy to check & € X** and
IZ]] < ||l=||. By Hahn-Banach, we have ||Z|| = ||z||. It’s then clear that z — &
is linear. So the image of X in X** is a closed subspace of X**, which we will
always identify with X. Say X is reflexive if X = X**.

Warning. There exists Banach space J such that J is isometrically isomorphic
to J** but J**/J has dimension 1.

Definition. We say X is super-reflezive if every Y finitely representable in X
is reflexive. So super-reflexive = reflexive.
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Example. Let X = (@ner)eg = {(xp) 1 Tn € 20, Y ||7,])* < 0} X is
reflexive, but ¢; is finitely representable in X (see example sheet), so X is not
super-reflexive.

We recall the following for a Banach space X:

(i)

(iii)

(iv)

(vi)

The weak topology on X is defined as follows: U C X is w-open if Vx € U,
IneN, 3f1,..., fn € X*, e > 0 such that {y: |fi(y —x)| <¢Vi} CU.
Note |f;(y —x)| < € can be written as f;(z) —e < fi(y) < fi(z) +e. So this
is a cylindrical set with finite codimension. This is the weakest topology
on X for which every f € X™ is continuous.

A convex subset C' of X is ||-||-closed <= w-closed.

Proof. (<) is clear. (=) if x ¢ C, then by Hahn-Banach separation
({z} compact convex, C closed convex), there exists f € X* such that
supe f < f(x). So {y : f(y) > supe f} is a weak neighbourhood of x
disjoint from C. O

The w*-topology on X* is defined as follows: U C X* is w*-open <=
VfeU IneN, xy,...,2, € X, € > 0such that {g € X* : |(g— f)(x;)| <
€, Vi} C U. This is the weakest topology on X* for which every x € X C
X™** is continuous. So w*-topology C w-topology on X*.

Banach-Alaoglu Theorem: Bx- = {f € X* : ||f|| <1} is w*-compact.

Proof. Define

(Bx-,w*) ——= [[AeR: A < |},
zeX
with ¢(f) = (f(2))zex where the codomain is equipped with the product
topology, which is compact by Tychonov. It’s clear that ¢ is a homeo-

morphism of Bx- onto ¢(Bx-). Then ¢(Bx~) =, yex.apert(Az)zex
Aaztby — @GAg — bA, = 0}, which is closed, hence compact. O

Goldstine’s Theorem: Ew* = By« in X**.

X is reflexive <= (Bx,w) is compact.

Proof. (=): We have X = X** so (X,w) = (X**,w*) so (Bx,w) =
(Bx~x, w*) which is compact by Banach-Alaoglu.
(«): The restriction of the w*-topology of X** to X is the w-topology. So

By is w*-compact in X**. So Bx is w*-closed and hence Bx++ = Ew =
Bx and hence X** = X. O

Lemma 6.2 (Local reflexivity). Let X be a Banach space, E C X* with
dimFE < oo and let ¢ € X** and let M > ||¢||. Then 3z € X such that
lz]| < M and Z|gp = ¢|E.
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*

Remark. We can now prove Goldstine: @w = Bxs+. Since Bx C Bxx«
and Bx« is w*-closed, it follows that Ew C Bx+«. Fix ¢ € Bx« and a
w*-neighbourhood U of ¥. Then dn € N, f1,..., f, € X*,de > 0 such that
{xeX*:|(x—v)(fi)] <e Vi} CU. Fix § > 0 to be determined. By Lemma
2,3z € X, ||z|| < 1446, and f;(z) =¥ (f;) for all 4. If ||z|| < 1, then z € Bx NU,
so done. Assume Jz|| > 1. Then

fi(x)

]

(fi) =o(fo)| =

£ i = )

1=zl <ol fill, Vi

[l
We can choose ¢ > 0 such that §|| f;]] < e for all 4, and then Tan € BxNU.

Proof of Lemma 2. Fix a basis fi,..., f, of E. Define T: X — R" by Tz =
(fi(x))r; and let C' = {Tx : ||z|| < M}. We need (¢(f;))", € C. Then we will
be done. T is a bounded linear map and C' is convex. We show that 7" is onto:
if not, then there exists a = (a1, ..., a,) € R™\ {0} such that Y"1, a;f;(z) =0
for all , i.e., > 1 ; a;f; = 0, but this is a contradiction. By the Open Mapping
Theorem, C' is an open set. Let’s assume that (o(f;))?, ¢ C. By Hahn-Banach
separation, Ja = (a1,...,a,) # 0 such that >, a;f;(z) < D1, a;p(f;) for
all 2 € X, o] < M. Hence IS0, aifillM < p(5o0y a:fe) < ol acfill
Since Y | aif; # 0, we get M < [|¢||, a contradiction. O

Theorem 6.3. Let X be a Banach space. Then the following are equivalent:
(i) X is non-reflexive;
(ii) V0 € (0,1), I(x;)$2, in Bx, (fi)$2, in Bx~, such that

0 ifi<j
fl(wj)_{o if >

(iif) 30 € (0,1), the above holds;
(iv) V8 € (0,1), 3(z;) in Bx such that Vn € N,

d(conv{xy,...,zn}, conv{®n i1, Tnia,... }) > 0.

(v) 36 € (0,1), such that the above holds.

Proof. (i) = (ii): Since X is a proper closed subspace of X**, 3T € X*** such
that ||T|| = 1, T|x = 0 (by Hahn-Banach). Fix 6 € (0,1) and choose ¢ € X**,
loll < 1, T(9) > 6. Let A = T(p). Then 6 < A = T(p) < [T|ll¢l| = llol] < 1.
ie. 0 <A<

Since ||| > 0, there exists fi; € Bx~ such that o(f1) = 6. Then 6 = ¢(f1) <
lellllf1ll < |If1ll, and hence 3z € Bx such that fi(z1) = 6.

Assume now that for some n > 1 we have found sequences (z;)?_; in Bx
and (f;), in Bx~ such that

0 if1<i<j<n
fi(ﬂfj)z . . .
0 ifl1<j<i<n,

o1
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and ¢(f;) =6 for 1 < i < n. Since T(z;) =0for 1 <i <nand T(p) = A
and |T|| = 1 < %, by Lemma 2, 3g € X* such that [|g| < % and g(z;) =0
for 1 <i < mnand p(g) =\ Then fr41 = %g € Bx+ and f,41(x;) = 0 for
1<i<mnand p(fnt1) = 6. Since ¢(f;) =0 for 1 <i <n+1and |¢|| <1,
so by Lemma 2, 3,41 € Bx such that f;(xn,41) =60 for 1 <i <n+ 1. Now
continue inductively.

(ii) = (iii) and (iv) = (v) are clear.

We next show (ii) = (iv) and (iii) = (v). Fix 6 € (0,1). Assume 3(z;) in
Bx, (f;) in Bx~ such that

0 ifi<j
f’(%)_{o ifi> .

Given n € N and finite convex combinations Y. t;z; and > o~ . t;z;, we have

1=n—+1
oo
Z tix; — Zta:z > fn+1( Z by — Ztm) = Y 0t;=0.
1=n—+1 1=n—+1 1=n—+1
Thus
d(conv{xy,...,xn}, conv{®n i1, Tnia,... }) > 0.

Finally, we show (v) = (i). Assume 30 € (0,1) and (x;) in Bx such that (v)
holds. Assume for a contradiction that X is reflexive.

For n € N, let C,, = conv{x,, 11, %ns2,...}. Cp (||-|]-closure) is a ||-||-closed,
convex subset of By. Hence C,, is a w-closed subset of Bx. Also C; D Cy D
C3 D ... and C, # 0 for all n. Since By is w-compact, we have ()7, C,, # (?)
say it contams x. Since x € C7, there exists y € C; such that ||z —y| < ¢
Choose n such that y € conv{wzy,zs,...7,}. Since x € C,, there exists z € C’
such that ||z — z|| < g. Then

0 < d(conv{xy,...,xn},conv{xy i1, Tniz, ... }) < |ly— 2| < ?,
a contradiction. O
Ultrafilters
Fix a set I # (. A filter on I is a family F C P(I) such that
(i) IeF, 0¢F;

(i) AcBCcI,Ae F = BeF,
(ii) A Be F = ANBeF.
Remark. One can think of F as “big sets”, or “full-measure”.

Example. (i) ForieI,U; ={AC:ie A} is a filter — the principal filter
at 1.

(ii) If |I| = oo, then {A C T :|I\ A|] < oo} is a filter — the cofinite filter on I.
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Definition. If X is a topological space, f: I — X is a function, F is a filter
on I, x € X, then we write x = limz f if for all neighbourhoods U of z in X,
{iel:fi)eU}eF.

Example. (i) If I = N, F = cofinite filter on N, then this is just the usual
notion of convergence of a sequence.

(ii) If X is Hausdorff and « = limr f,y = limx f, then z = y.
(ii) If F =U; for some i € I, then f(i) = limr f holds for all f: I — X.

Definition. Let I # () be a set. An wltrafilter on I is a maximal filter on I with
respect to inclusion: it’s a filter U such that if F is a filter and & C F then
Uu==r.

Example. Any principal filter U; = {A C I : i € A} is an ultrafilter. If T is
finite, then these are the only ones.
In general, any filter is contained in an ultrafilter (use Zorn’s lemma).

Definition. A free ultrafilter is an ultrafilter that is not a principal ultrafilter.

Example. Any ultrafilter containing the cofinite filter is a free ultrafilter (|| =
00).

Lemma 6.4. Let U be an ultrafilter. If AUB €U then Ac¢lU or BelU.

Proof. Assume otherwise, that 3C, D € U such that ANC = BN D = (. Then
(AUB)N(CND) =0, a contradiction, as AUB,CND € U.
WLOG ANC #§ for all C € Y. Then

{DcI:3CeU,D>ANC}
is a filter on I and it contains U, so equals U. So A € U. O

Remark. (i) Every free ultrafilter contains the cofinite filter. [For any finite
set A C I, consider AU A° in the lemma above.]

(ii) For an ultrafilter U, define pu: P(I) — {0,1} by u(A) = 1acy. Then p is
a finitely additive measure.

Lemma 6.5. Let U be an ultrafilter and K be a compact topological space.
Then for every function f: I — K there exists € K such that x = limy, f
(might not be unique, but if K is Hausdorff then it is). In particular, for every
bounded function f: I — R there exists a unique x € R such that = = limy, f.

Proof. If not, then Va € K, 3 open neighbourhood V, of « such that A, = {i €
I: f(i)eVy} ¢U. Since K is compact, there exists a finite ' C K such that
User Ve = K. Then J,cp Az = I € U and by Lemma 4, 3z € F' such that
A, € U, a contradiction. O

Remark. Given bounded functions f,g: I — R we have
li =1 li
im(f +¢) =lim f +limg,
ip(so) = (1) (tgpo).
and if f(i) < g(i) for all 4 € I, then

lim f < limg.
im f <limg
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Ultraproduct and Ultrapowers

Definition. Fix a non-empty set I. We are given Banach spaces X;, i € I. We
fix an ultrafilter U on I. We let

<@Xi> = {(xi)ie[ cx; € X; Vi€ I, sup|lx] < oo} .
. iel
i€l 00
This is a Banach space with norm ||(z;)||cc = sup,c;|/z;||. Define
1) llee = limas |-
This defines a seminorm on (@ie I Xi)oo' It follows that
N = {(wi) : (@)l = 0}

ser Xi) ., and the quotient (Bic; Xi)_ /Ny becomes a
normed space with norm ||((#;)ser)ull = |(xs)ics|ly, where for 2 € (@,;c; X )OO,
2y = =+ Ny. It is easy to check that this is a complete norm. This Banach
space is denoted by (HZGI ) — called an wltraproduct of (X;)ier.

If X; =X foralli el for some Banach space X, then the ultraproduct
(IT;es Xi),, is denoted by XY — called an ultrapower of X.

is a subspace of (P

Proposition 6.6. Any ultrapower X of a Banach space X is finitely repre-
sentable in X.

Proof. Let E be a finite-dimensional subspace of X¥. Choose a basis ey, ea, . . ., €,
of E. For each 1 < k < n, fix (z,)icr, & bounded sequence in X, such that
€L — ((-’rk,i)i)lzﬁ So V()‘k);clzl in Rn, Z)\kek = ((Z )\kwk’i)i)u.

Fix € > 0. We seek an injective linear map T: E — X such that ||T||-|| T~ <
1+ € (here T~1: T(E) — E). Choose § € (0, %) such that 12 < 1 +e¢. Let
S C R™ be a finite set such that S = {3}_, Aex : (\p)f_, € S} is a d-net of
SE.

Since |35 _; Arerlly, = limy [|[>05_; Aezril| = 1 for all (Ax) € S, we have

n
E AL i

{iEI:1—5<
k=1

<1+5}eu.

Since S is finite, these sets have intersection in &. In particular, Jiy € I such

that
n
> M
k=1

Now define T: E — X, T(3"0_, prer) = Dopeq MkThios (i) € R™. Given
x € Sg, 3z € S such that || — z|]| < 4. So

1-0< <149 V(Ar) €S.

[Tz]| < |[Tzl| + [ T(z = 2)[| < (1 +0) + [|T][é.

Taking sup over @ € Sg, ||T|| < 1+ 6+ 4|7, so |T|| < 2. It follows that
|Tz|| > || Tz — |T(zx—2)|| > 1 -0 — 36 = L=32. Hence ||T H <+ 35 and
ITIITH < 55 <1+ -
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Theorem 6.7. Let X be a Banach space. Then X is superreflexive <=
whenever Y is crudely finitely representable in X, then Y is reflexive.

Proof. ( <= ): clear from definition. ( = ): assume Y is non-reflexive and
crudely finitely representable in X. Fix 6 € (0,1). By Theorem 3, 3(y;)32; in
By such that Vn,

d(conv(y1, ..., Yn),CcONV(Ypt1, Ynt2,--.)) > 0.

There exists A > 1 such that V subspace F C Y, dim F < oo, Jlinear T: E — X
such that
Myl < Tyl < llyl - Yy € E.

For N € N, 3 linear map T : span(yi,...,yn) — X such that
Myl < 7wyl <yl Vy € span(yy, ..., yw).

Let zy,; = Tn(y;) for 1 <i < N. Note that for 1 <m < n < N and for convex
. . m n
combinations ) ,", t;x N, Zi=m+1 t;x N, we have

m n m n
Ztil‘N,i - Z tiTN,i Zfiyi - Z tiy
i=1 i=1

i=m-+1 1=m-+1

> >

0

>

Note also that ||zn || <1 for all 1 <i < N. WLOG replace 6/X by 6. Now fix
a free ultrafilter &/ on N. Define

. IN.i le S N ~ - 00
IN; = { i T = ((@ni)N=1)u-

0 ifi>N,

Given 1 < m < n and convex combinations z = Y ;" | t;&; and w =Y ti%;

in XY, we have VN € NN > n,

n
1=m-+1

ZtifN,i - Z LiTng|| > 0.
i=1 i=m+1
It follows that ||z — w|| > §. Then
d(conv{Zy,...,Tm},conv{Zyi1,...}) > 0.

By Theorem 3, X“ is non-reflexive. By Proposition 6, X is finitely representable
in X, and hence X is not superreflexive. O

Definition. A Banach space X is strictly conver if Vx,y € Sx, x # vy, H%ﬂ’ || <
1. Say X is uniformly convex if Ve € (0,2], 3§ > 0, Vz,y € Sx, ||z —y| >
e = 1— HITJ”’H > 0. The modulus of uniform convexity of X is the function
dx:[0,2] — R* defined by

x
0x(e) = inf{l — H;—yH cx,y € Sx, ||z —yl| > €}
Example. (i) 43 is uniformly convex: given z,y € Sp, with ||z — y|| > €, we

have, by the parallelogram rule,

2 2 2 2 2
4=2[zlI” +2[lyll” = llz +ylI” + |z =yl > llz +y[" + €

Sol— |2 21—\ i- 2~

Q
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(ii) Choose 1 < p, <2, p, — 1. Let X = (@, , 6120")62. Then X is strictly

convex, but not uniformly convex. However, X ~ (@, £5), = /2. So
uniform convexity is not an isomorphic property.

(iii) ¢p, 41,0 are not strictly convex.

Theorem 6.8 (Milman-Pettis). If X is uniformly convex, then X is reflexive.

Remark. Recall Goldstine’s Theorem: Bixw* = Bx««. In fact, if dim X = oo,

¢

then @’” = Bxs~.

Proof. Let ¢ € Bx«+ and U be a w*-neighbourhood of ¢. WLOG 3n € N,
fisoooy fn € X*, > 0such that U = {¢p € X** : |(vp — ¢)([i)] <€, ¥i}. Choose
z € Bx € U by Goldstine. Fix z € ()[_  ker f;, 2 # 0 (dim X = o0o). Then
x+ Az € UVXeR, and 3\ € R such that ||z + Az|| = 1. O

Proof of Theorem 8. WLOG dim X = co. Fix ¢ € Sx+-. We show that ¢ € X.
Then we’ll be done. Fix € € (0,2) and let 6 = dx(¢) > 0. Then Vz,y € Sx
if ||z +y| =2 -0, then 1 — ||ZH|| < ¢ < 4, and hence ||z — y| < e. Choose
fe € Bx- such that ¢(f.) >1— 5. Let V. = {¢) € X** : ¢(f.) > 1— 3}. This
is a w*-closed neighbourhood of ¢. Hence W, = V. N Sx is non-empty and
|I]|I-closed subset of X. Also, given x,y € W, ||z +y| > fe(zx+y) >2 -4, and

hence ||z — y|| < e. Thus, diam(W,) < e. Now for n € N, let

- 5x(1/k
A=\ Wip = e X o(fip) 2 1= X0 g1y sy
k=1
So A,, is a non-empty, [|-||-closed subset of X of diameter at most diam (W} ,,) <

%. Also, A, D A,41 for all n, and X is complete, so by Cantor’s intersection
Theorem, N2 ; A, = {«} for some = € Sx.
We show that ¢ = &. If not, then 3g € X*, n = ¢(g) — g(x) > 0. Let

B, = A, 0 {1 |p(g) — t(g)] < 2}

= {ww(fl/k) >1—-—— for k = yeeey Tl |90<g)_¢(g) < g}mSX7

w*-closed neighbourhood of ¢

so By, is nonempty, ||-|-closed and diam(B,,) < diam(A,) — 0. So N>, B,, =

{z}, so |p(g) — g(z)| < 3, a contradiction. O

Fact (Enflo). (X, ||-||) is superreflexive <= 3 equivalent norm ||-||" on X such
that (X, ||-||’) is uniformly convex. Recall norm equivalence means Ja, b > 0 such
that

allzl| < flz]|" < bl|.

Example. (5 @y (3 ~ (5 ©o €3 = (5, which is superreflexive but £y o 7 is not
strictly convex.

Recall that the binary tree of depth n, By, has vertex set Uy_,{0, 1}* and
€= (e1,...,ex) € {0,1}* k < n, is joined to (e1,...,€x,i),5=0,1.

o6
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00 01 10 11
000 001 010 011 100 101 110 111

Notation. Given € = (ey,...,€x), 6 = (d1,...,d¢), we write € < § if k¥ < £ and
€, = 9; for 1 <i < k. We also let |¢| = k denote the length of e.

Definition. We say a Banach space X has the finite tree property if 30 > 0,
Vn € N, 3z, : € € B,} C Bx such that . = %(xeo + 2¢) for all € € B,,_1,
|lxe — x| > 0 Ve € By,—q, i =0, 1.

Theorem 6.9. For a Banach space, the following are equivalent:
(a) X is not superreflexive;
(b) X has the finite tree property;
(¢c) 30 >0,Vn € N, I{z1,...,2,} C Bx such that

n m
Zaixi >0 Zai Yai,...,ap €R, 1<l<m<n.
i=1 i=¢

Remark. Let S = {(a;)32; C R : > 2, a; is convergent}. This becomes a
normed space with

m

>

i={

[(as)l = Sup{

:1§£§m}.

This is called the summing norm. Note S ~ ¢g, via the map

(ai)iZy — (Z ai)
Definition. Given a convex set C in a Banach space Z, a point w € C' is
strongly exposed if 3f € Z* such that
(i) flu) < flw) VueC uuw;
(ii) diam{u € C: f(w) —e < f(u)} - 0ase— 0.

o0

n=1

Theorem 6.10. Every non-empty, w-compact convex subset of a separable
Banach space has a strongly exposed point.

Proof. Omitted. Theorem is also true for non-separable spaces. O

o7
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Proof of Theorem 9. (a) = (b): There exists a non-reflexive Z finitely rep-
resentable in X. Fix § € (0,1). By Theorem 3, 3(z;) in Bz such that
d(conv{zi,..., zn},conv{z,i1,...}) > O foralln € N. Fore = (e1,...,€,) € By,
let k(e) =1+ > 1, 2" ‘¢;. This is an enumeration of the leaves. For § € B,,,
let Is = {k(e) : 6 < ¢,|¢] = n}, set of nth generation descendants of §. Let
25 = 2l01-n Zkel(; z. Since |I5| = 27~ we have z5 € conv{zy : k € Is} C By.
For § € By_1, Is = IsoUIs; and Iso N I51 = 0, and moreover, Vk € s,
Ve e Isq, k < £ Tt follows that z5 = %(Zgo + zs1), and for ¢ = 0,1, we have
|25 — z5,]l = % 250 — z61]| = Sd(conv{zy : k € Iso},conv{z : k € I51}) > &.
So Z has the finite tree property, and hence so does X since Z is finitely
representable in X.

(b) = (a): 30 > 0, Vn, I{a? : € € B,} C Bx such that 2" = (2% + z7)
Ve € By—1 and |27 — 2| > 6 Ve € B,_1, i = 0,1. Let U be a free ultrafilter
and let B, be the oo binary tree with vertex set (J;—,{0,1}* and € joined to ei
Ve € By, 1 =0,1. Let

)l iflel <n - ien
e = {0 if n < |e. and - Fe = ((@)n)y
It’s easy to see that T, = %(:Eeo + Ze1) and ||Te — Ze]| > 0 Ve € Boo, @ = 0, 1.
Let Z = span{Z. : € € By }. This is a separable subspace of X¥. Assume for
contradiction that X is superreflexive. Then by Proposition 6, Z is reflexive.
Then By is w-compact. Let C' = Tonv{Z. : € € Bs}. Then C is a ||-||-closed
convex subset of Bz, and hence w-compact. By Theorem 10, C' has a strongly
exposed point w. So If € Z* such that f(u) < f(w) Yu € C,u # w and In > 0
{ue C: f(u) > f(w) — n} has diameter < &. Since {u € C: f(u) < f(w) —n}
is ||-||-closed and convex and C C, it cannot contain Z.Ve. So Je € By, such
that f(Zc) > f(w) —n. Then 3(f(Zeo) + f(Ze1)) = f(Z), so i € {0,1} such
that f(Ze) > f(w) —n. Thus ||Z. — Ze|| < &, a contradiction.
(a) = (c¢): Let Z be non-reflexive and finitely representable in X. By
Theorem 2, 30 € (0,1) and (2;) in Bz, (h;) in Bz« such that

0 i<
hi(z;) = -
() {o i>j
Given scalars (a;)7_y, [Yor, ail = |ghe (O aizi)| < 5 1307 @izl 1 <0 <
m < n, then

m

>

i={

n

> a

i=m-+1

< + <2
- -0

n n
E a; E iz
i=t i=1

Since Z is finitely representable in X, VA > %, Vn, dz4,...,2, € Bx such that

m n
E Qg E a;T;
i=f i=1

¢) = (a):30 > 0,Vn e N, H{z?,..., 2"} C Bx such that
1 n

<A Vai,...,an ER, 1</ < m.

n

E a;xy

i=1

m

S

=0

>0 Vai,...,ap €R, 1<l<m<n.

o8
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Given a free ultrafilter ¢« on N, the usual process yields an infinite sequence
(#;)$2, in Bxu such that Vn € N, Vaq,...,a, € R, V1 </l <m <n,

n m
E a;T; E a;
i=1 i=t

>0

It follows that Vi € N,

0 i<y
Bi(F:) = =
(@) {0 P>
extends to a well-defined linear functional on XY with ||h;|| < 1 [also uses
Hahn-Banach]. By Theorem 3, X¥ is not reflexive. By Proposition 6, X¥ is

finitely representable in X, so X is not superreflexive. O

Theorem 6.11 (Metric Characterization of Superreflexivity). Let X be a
Banach space. The following are equivalent:

(a) X not superreflexive;

(b) The sequence (D,,) of diamond graphs embeds uniformly bilipschitzly into
X.

Sketch proof. (non-examinable) (b) = (a): Have f,,: D, — X sup,, dist(f,) <
oco. WLOG 3§ > 0, Vn, Yo,y € D, 627 "d,(z,y) < |[fn(z) — fu(y)] <
27"d,(z,y). Let Dy = tb, Dy = tblr, and D, is a union of 4 copies of
D,_1. Fixn, f = f,. Let zyg = f(t) — f(b). Then ||zp| < 27"d,(t,b) =
1. Consider [(7(2) = £(6)) — (£(6) = FB)] = [((8) — £(r)) — (£(r) — FO) =
12(f(r) = fO)]| = 2627"dn(€,7) = 26. WLOG ||(f(2) — f(£)) — (f(£) = F(B)]| =
8. Let zo = 2(f(€) — f(b), a1 = 2(f(t) — f(£)). Then zp = 5(zo +21) and
lzg — xol| = 5 ||z1 — 20]| > J. Continue inductively.

(a) = (b): 30 > 0, Vn, Jz1,...,22n € Bx with lower summing norm
estimate. First embed f,: D, — {0,1}?" C £2". For Dy, do t = 1,b = 0.
For D1, dot = 11,£ = 01,b = 00,7 = 10. If 2y € Eyn_1, fa-1(x), fa_1(y) €
{0, 1}2"71 differ in one digit, say j. Consider yuzv in D,,. If v € {z,y,u,v},
(fn(l/))Qi—l = (fn(l/))Qi = (fn_1<.23))1'. fn(lj)gj_l,fn(V)gj will be 00, 11,01, 10 for
V=x,Y9u,v (fn—l(x))j =0.

Let ¢g,: D,, = X given by

—

T) = Zéjl’j’ (€5) = fu(z).

If z is in top left, y is in bottom right, thenf, (z) = (fn-1(x),1,...,1), fu(y) =
——

on—1
(fn71(y)707...70). O

on—1

Exam will be 4 questions, answer 3 in 3 hours. Mostly bookwork.
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