
Part III — Metric Embeddings

Based on lectures by A. Zsák
Notes taken by Daniel Ng

Lent 2020

Functional Analysis and Part II Probability and Measure are essential

Definitions, basic examples and motivations. Frechét embeddings, Aharoni’s theo-
rem (`∞, c0), Euclidean distortion, Bourgain’s embedding theorem (`2, L2). Obstruc-
tions to embeddings. Poincaré’s inequalities (L1, L2). Dimension reduction in L2

(Johnson-Lindenstrauss Lemma). Lack of dimension reduction in L1. Local theory
of Banach spaces, Ribe programme. Bourgain’s characterisation of super-reflexivity,
metric type and cotype and/or metric Dvoretzky’s Theorem). Coarse embeddings of
`2 into Banach spaces, coarse embeddings into uniformly convex/uniformly smooth
Banach spaces.

Books: Ostrowski’s Metric Embeddings, Matousek’s Lectures in discrete geometry
(Ch15 - extended online notes), Lectures in metric embeddings (available online). Assaf
Naor’s survey article on the Ribe programme.

Related Part III courses: discrete analysis of Fourier series, some combinatorics.
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1 Basic Definitions, Examples and Motivations III Metric Embeddings

1 Basic Definitions, Examples and Motivations

Definition. A metric space is a set M with a metric d : M ×M → R such that
(i) d(x, y) ≥ 0 for all x, y, d(x, x) = 0 for all x, (ii) d(x, y) = d(y, x) (symmetry),
(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality), (iv) d(x, y) = 0 =⇒ x = y.
If d satisfies (i),(ii) and (iii) then it’s a semimetric.

Example. Graph with the graph distance. A graph is a pair (V,E) where
V is a set and E ⊂ V (2) = {e ⊂ V : |e| = 2}. Elements of V are the vertices of G
and elements of E are the edges of G. A walk in G is a sequence x0, x1, ..., xn of
vertices such that xi−1xi ∈ E for all 1 ≤ i ≤ n. [Given e = {x, y} ∈ E, x, y are
the endvertices of e, write e = xy = yx. We also write x ∼ y]. The length of the
walk is n. This is called a walk from x0 to xn. If xi 6= xj whenever 1 < j− i < n,
this walk is called a path from x0 to xn. Say G is connected if for all x, y ∈ V
there exists a walk (or a path) in G from x to y. The graph distance is defined
as dG(x, y) = the length of a shortest path in G from x to y. Some standard
graphs: Kn is the complete graph on n vertices, all

(
n
2

)
edges are present. Here

d(x, y) =

{
1 if x 6= y,

0 if x = y.

Pn is the path of length n, with n+ 1 vertices x0, x1, ..., xn, and E = {xi−1xi :
1 ≤ i ≤ n}. As a metric space, this is {0, 1, ..., n} with d(x, y) = |x− y|. Cn is
the cycle of length n. V = {x1, ..., xn} and E = {xixi+1 : 1 ≤ i < n} ∪ {x1xn}.
Bn is the rooted binary tree of depth n. And finally, Hn is the Hamming cube
V = {0, 1}n, x ∼ y iff there exists exactly one coordinate i such that xi 6= yi.
Then d(x, y) = |{i : xi 6= yi}|.

Example. Groups with the word metric. Let G be a group generated by
some subset S. We always assume that e /∈ S and S is symmetric: ∀x ∈ S,
x−1 ∈ S. The word metric is defined to be d(x, y) = min{n : ∃a1, ..., an ∈
S s.t. x−1y = a1...an}. The Cayley Graph C(G,S) has vertex set G and x ∼ y
iff x−1y ∈ S. The graph distance on G is d.

Example. Cut semimetrics. A cut on a set M is a partition of M into S
and M \ S. The corresponding cut semimetric is

dS(x, y) =

{
0 x, y are in the same part

1 otherwise.

Definition. A normed space is a real or complex vector space V with a norm
on V , i.e. a function ‖·‖ : V → R such that (i) ‖x‖ ≥ 0 for all x ∈ V , (ii)
‖λx‖ = |λ|‖x‖ for all λ scalars and x ∈ V , (iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all
x, y ∈ V , (iv) ‖x‖ = 0 =⇒ x = 0. Then d(x, y) = ‖x− y‖ is a metric on V . If
V is complete then it is called a Banach space. If ‖·‖ satisfies (i),(ii) and (iii)
then it is called a seminorm.

Example. Classical sequence spaces.

• `np = (Rn, ‖·‖p) for 1 ≤ p ≤ +∞, with ‖x‖p = (
∑n
i=1 |xi|p)

1/p
. Here ei is

the standard ith basis vector. If p =∞ the norm is ‖x‖∞ = max1≤i≤n |xi|.
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1 Basic Definitions, Examples and Motivations III Metric Embeddings

• `p = {(xi)∞i=1 :
∑n
i=1 |xi|p} for 1 ≤ p < +∞, with ‖x‖p = (

∑∞
i=1 |xi|p)

1/p
.

`∞ =
{

(xi)
∞
i=1 : supi≥1 |xi| <∞

}
, with ‖x‖∞ = supi≥1 |xi|. More gen-

erally, for a set S, `∞(S) = {x : S → R : x is bounded}. The norm is
‖x‖∞ = sups∈S |x(s)|. Note c0 = (xi)

∞
i=1 : xi → 0} is a closed subspace of

`∞.

Example. Classical function spaces. Let (Ω,F , µ) be a measure space.

• For 1 ≤ p < ∞, Lp(µ) = {f : Ω → R : f measurable,
∫

Ω
|f |p dµ < ∞}

equipped with ‖f‖p =
(∫

Ω
|f |p dµ

)1/p
.

• For p = ∞, L∞(µ) = {f : Ω → R : f measurable,∃N ∈ F , µ(N) =
0, f bounded on Ω\N}, equipped with ‖f‖∞ = ess sup(f) = inf{supΩ\N |f | :
N ∈ F , µ(N) = 0}.

• In the case Ω = [0, 1], µ= Lebesgue measure, we write Lp for Lp(µ).

• For compact space K, C(K) = {f : K → R : f cts} is a closed subspace of
`∞(K), e.g. C([0, 1]).

Example. Hilbert Space. An inner product space (IPS) is a vector space V
equipped with an inner product 〈·, ·〉 : V × V → R (symmetric bilinear, positive

definite). Then V becomes a normed space with ‖x‖ = 〈x, x〉1/2. If V is complete
wrt ‖·‖, then it’s called a Hilbert space.

Definition. Let f : M → N be a map between metric spaces. Then f is
isometric or an isometric embedding if d(f(x), f(y)) = d(x, y) for all x, y ∈M .
We say f is a bilipschitz embedding if ∃a, b > 0 such that

ad(x, y) ≤ d(f(x), f(y)) ≤ bd(x, y) ∀x, y ∈M. (1)

The distortion of f is dist(f) = min{ ba : (1) holds for f}.

Remark. (i) If a = b, then f is a scaled isometric embedding.

(ii) Definition makes sense for semimetrics.

(iii) If (1) holds, then f is Lipschitz with Lipschitz constant Lip(f) ≤ b, where

Lip(f) = sup

{
d(f(x), f(y))

d(x, y)
: x, y ∈M,x 6= y

}
.

Also f is injective (because of the LH inequality) and f−1 : f(M)→M is
Lipschitz, with Lip(f−1) ≤ 1

a . Then dist(f) = Lip(f) Lip(f−1).

Recall, if T : X → Y is a linear map between normed spaces, then T is
continuous iff T is bounded (∃C > 0, ‖Tx‖ ≤ C ‖x‖ for all x ∈ X). The smallest
C is ‖T‖ iff T is Lipschitz, ‖T‖ = Lip(T ). T is an isomorphism if T is a bijection,
both T and T−1 are bounded. T is an isometric embedding or into isomorphism
if T is an isomorphism between X and T (X), iff T is bilipschitz. Then dist(T ) =
‖T‖

∥∥T−1
∥∥. T is an isometric isomorphism embedding if ‖Tx‖ = ‖x‖ for all

x ∈ X.

4



1 Basic Definitions, Examples and Motivations III Metric Embeddings

Notation. Write X ↪→C Y if there exists an isomorphism embedding T : X → Y
with ‖T‖

∥∥T−1
∥∥ ≤ C. We say X C-embeds into Y . So X ↪→1 Y iff there exists

an isometric isomorphic embedding X → Y . X ∼ Y means X,Y are isomorphic.
X ∼= Y means X,Y are isometrically isomorphic.

Example. (i) `np ↪→1 `p.

(ii) `p ↪→1 Lp = Lp([0, 1], λ = Leb). proof: Fix pairwise disjoint measurable
sets (Ai)

∞
i=1 each of positive measure. For 1 ≤ p <∞, consider

(xi)
∞
i=1 7→

∞∑
i=1

xi1Aiλ(Ai)
−1/p,

and for p =∞, consider (xi)
∞
i=1 7→

∑∞
i=1 xi1Ai .

Fact. If (Ω, µ) is a measure space, X ⊂ Lp(Ω, µ) separable, then X ↪→1 Lp.

Notation. For a normed space X, let BX = {x ∈ X : ‖x‖ ≤ 1} be the closed
unit ball, and SX = {x ∈ X : ‖x‖ = 1}, the unit sphere of X.

Proposition 1.1. For all n ∈ N, `n2 ↪→1 Lp for any 1 ≤ p ≤ ∞.

Proof. Case 1 ≤ p <∞. Let B = B`n2 , µ = Lebesgue measure on B, S = S`n2 .
Since µ is rotation invariant, the value of

∫
B
|〈x, ω〉|p dµ(ω) is the same for all

x ∈ S. Call this α. Define T : `n2 → Lp(B,µ) by (Tx)(ω) = 〈x, ω〉α−1/p. Then
T is linear and ‖Tx‖pp =

∫
B
|〈x, ω〉|p αdµ(ω) = ‖x‖p2 for all x ∈ `n2 . To finish,

use the fact above to embed Lp(B,µ) ↪→1 Lp.
Case p =∞. This follows from the next result and example above.

Definition. Let X be a normed space. The dual space X∗ of X is X∗ =
B(X,R) = {f : X → R : f linear bounded}. The operator norm is ‖f‖ =
sup{|f(x)| : x ∈ BX}. By the Hahn-Banach theorem, ∀x ∈ X, ∃f ∈ SX∗ such
that f(x) = ‖x‖. So ‖x‖ = max{g(x) : g ∈ SX∗}.

Proposition 1.2. Let X be a separable normed space. Then X ↪→1 `∞.

Proof. Let (xn)∞n=1 be dense in X. Then for all n ∈ N, choose fn ∈ SX∗ ,
fn(xn) = ‖xn‖ by Hahn-Banach. Define T : X → `∞ by Tx = (fn(x))∞n=1.
Given x ∈ X, |fn(x)| ≤ ‖fn‖ ‖x‖ = ‖x‖ for all n. So T is well-defined. T is
linear and T is bounded with ‖T‖ ≤ 1. For all n ∈ N, ‖Txn‖ = ‖xn‖. So T
is isometric on a dense set, so by continuity T is isometric on the whole space
X.

Remark. For any normed space X there exists a set S such that X ↪→1 `∞(S),
e.g. S = SX∗ .

Corollary 1.3. (Corollary to proposition 1.1) Let M be a finite metric space.
If M embeds into L2 with distortion ≤ D, then M embeds into Lp for all
1 ≤ p ≤ ∞ with distortion ≤ D. i.e. L2 is the hardest thing to embed into.

Proposition 1.4. If M is an n-element subset of L1(Ω, µ), then M ↪→1 `
N
1 ,

where N = n!.
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Proof. Let M = {f1, ..., fn}. [Aside: fi 7→
∫

Ω
fi dµ is an obvious L1(Ω, µ)→ R,

but ∣∣∣∣∫ fi −
∫
fj

∣∣∣∣ ≤ ∫ |fi − fj | = ‖fi − fj‖L1

has equality if say fi ≤ fj a.e.] There exists a partition Ω =
⋃
π∈Sn Ωπ of Ω,

where Ωπ ⊂ {ω ∈ Ω : fπ(1)(ω) ≤ ... ≤ fπ(n)(ω)}. Here we have used the finiteness
of M . [Note that we have used the subset symbol. When two fs are equal for
some ω, we can arbitrarily put it in just one of the Ωπs.] Then

‖fi − fj‖1 =

∫
Ω

|fi − fj | dµ =
∑
π∈Sn

∫
Ωπ

|fi − fj | dµ =
∑
π∈Sn

∣∣∣∣∫
Ωπ

fi −
∫

Ωπ

fj

∣∣∣∣ .
Define T : M → `N1 by Tfi =

(∫
Ωπ
fi dµ

)
π∈Sn

. So above = ‖Tfi − Tfj‖1.

Example (More examples). (i) C4 embeds bilipschitzly into `22 naturally,
with distortion

√
2. It doesn’t embed isometrically. In `2, d(x, z) =

d(x, y) + d(y, z) iff y ∈ [x, z] = {(1− t)x+ tz : 0 ≤ t ≤ 1}. It follows that
`2 has the unique midpoint property : ∀x, z ∈ `2 there is at most one point
y (in fact exactly 1) such that d(x, y) = d(y, z) = 1

2d(x, z). C4 does not
have this property.

(ii) Any n-element set in a Hilbert space embeds isometrically into `n−1
2 .

Cannot do better in general. See example sheet. If we relax the condition
to bilipschitz, then we can do much better. In fact, ∀ε0,∃c > 0 any
n-element set in Hilbert space embeds into `m2 where m = c log n with
distortion < 1 + ε. See later for proof.

Observe: If M is a finite metric space, N is a metric space and |N | ≥ |M |,
then M bilipschitzly embeds into N .

Definition. Given families (Mα)α∈A and (Nα)α ∈ A of metric spaces, embed-
dings fα : Mα → Nα, α ∈ A, are called uniformly bilipschitz if supα∈A dist(fα) <
∞.

The sparsest cut problem.

Let G = (V,E) be a connected, finite graph. We are given two functions
C : E → R+ = [0,∞) (capacity) and D : V × V → R+ (demand). A cut of G is
a partitioning (S, V \ S) of V . The capacity of (S, V \ S) is

C(S, V \ S) =
∑

uv∈E,u∈S,v/∈S

C(uv).

The demand of the cut is

D(S, V \ S) =
∑

u∈S,v/∈S

D(uv).

The sparsity of the cut is C(S, V \ S)/D(S, V \ S) whenever D(S, V \ S) 6= 0.
This is NP-hard. So we look at an equivalent problem: Minimise over all cuts
with nonzero demand of the following quantity∑

uv∈E C(uv)dS(u, v)∑
u,v∈V D(u, v)dS(u, v)
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where dS is the cut semimetric. Note the denominator is twice D(S, V \ S).
Let ϕ∗(C,D) be this minimum. The idea is to minimise∑

uv∈E
C(uv)d(u, v),

subject to d being a semimetric and
∑
u,v∈V D(u, v)d(u, v) = 1. This is now a

linear programming problem with a linear normalisation condition. The property
that d is a semimetric is just constraints with inequalities. There are fast
algorithms to solve this.

Let ϕ(C,D) be the minimum and dmin be a semimetric that achieves this
minimum. Clearly ϕ(C,D) ≤ ϕ∗(C,D).

Lemma 1.5. Let (M,d) be a finite semimetric space. Then (M,d) embeds
isometrically into L1 iff d is a non-negative linear combination of cut semimetrics.

Proof. (⇐) We assume there exists cuts (Si,M \ Si) for i = 1, ..., k and non-

negative reals αi, i = 1, ..., k, such that d =
∑k
i=1 αidS . Let fi : M → R be

fi(x) = αi1x∈Si , and f : M → `k1 , f(x) = (fi(x))ki=1. Then

‖f(x)− f(y)‖1 =

k∑
i=1

|fi(x)− fi(y)| =
k∑
i=1

αidSi(x, y) = d(x, y).

(⇒) By proposition 4, there exists isometric embedding f : M → `k1 , some
k ∈ N. Enumerate {f(x)i : x ∈ M} as βi1 < βi2 < ... < βimi . Let Sij = {x :
f(x)i ≤ βij}, for 1 ≤ i ≤ k, 1 ≤ j ≤ mi. Fix x, y ∈ M , and fix 1 ≤ i ≤ k.
Suppose f(x)i = βij1 ≤ f(y)i = βij2 . x ∈ Sij for j ≤ j1, y ≤ Sij for j ≤ j2. If
we look at the sum

mi−1∑
j=1

(βi,j − βi,j−1)dSij (x, y) =

j2∑
j=j1+1

(βi,j − βi,j−1)

= βi,j2 − βi,j1
= f(y)i − f(x)i = |f(x)i − f(y)i| .

Sum over i:

k∑
i=1

mi−1∑
j=1

(βi,j−βi,j−1)dSij (x, y) =

k∑
i=1

|f(x)i − f(y)i| = ‖f(x)− f(y)‖1 = d(x, y),

so we have written d as a sum of cut semimetrics.

Theorem 1.6. Assume (V, dmin) embeds into L1 with distortion at most K,
then K−1ϕ∗(C,D) ≤ ϕ(C,D) ≤ ϕ∗(C,D).

Proof. Let f : (V1, dmin) → L1 be an embedding with distortion at most K.
Let d(x, y) = ‖f(x)− f(y)‖1. Since dist(f) ≤ K, there exists a > 0 such that
admin(x, y) ≤ d(x, y) ≤ Kadmin(x, y) for all x, y ∈ V . By lemma 1.5, there
exists cuts (Si, V \ Si), 1 ≤ i ≤ k and constants αi ≥ 0, i = 1, ..., k such that

d =
∑k
i=1 αidSi . Then

ϕ(C,D) =

∑
uv∈E C(uv)dmin(u, v)∑
u,v∈V D(u, v)dmin(u, v)

≥ 1

K

∑
uv∈E C(uv)d(u, v)∑
u,v∈V D(u, v)d(u, v)

=
1

K

∑k
i=1 γi∑k
i=1 δi

,
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where γi = αi
∑
uv C(uv)dSi(u, v) and δi = αi

∑
u,v∈V D(uv)dSi(u, v). Let

I = {i : δi > 0}. The above becomes

≥ 1

K

∑
i∈I(γi/δi)δi∑

i∈I δi
≥ 1

K
min
i∈I

γi
δi
≥ 1

K
ϕ∗(C,D).

Definition. Let f : M → N be a map between metric spaces. Assume there
exists increasing functions ρ1, ρ2 : R+ → R+ (s ≤ t =⇒ ρ1(s) ≤ ρ1(t)) such
that

ρ1(d(x, y)) ≤ d(f(x), f(y)) ≤ ρ2(d(x, y)) ∀x, y ∈M. (2)

We say f is a coarse embedding if in addition to (2), ρ1(t)→∞ as t→∞.

Example. Let f : R × [0, 1] → R by f(x, t) = x. This is a coarse embedding
with ρ1(t) = max(0, t− 1) and ρ2(t) = t.

Definition. We say f is a uniform embedding if in addition to (2), ρ2(t)→ 0
as t → 0+ and ρ1(t) > 0 for all t > 0. Equivalently this says f is uniformly
continuous, injective; f−1 : f(M)→M is uniformly continuous.

Proposition 1.7. For all 1 < q < ∞ there exists a map T : L1(Ω, µ) →
Lq(Ω× R, ν) which is simultaneously a uniform and coarse embedding. (Here
ν = µ⊗ λ is the product measure of µ and the Lebesgue measure λ.)

Proof. Define T as follows. For f ∈ L1(Ω, µ),

Tf(ω, t) =


+1 if 0 < t ≤ f(ω),

−1 if f(ω) ≤ t ≤ 0

0 else.

Note that Tf ∈ L∞(Ω× R). For f, g ∈ L1(Ω, µ),

|Tf(ω, t)− Tg(ω, t)| =

{
1 if g(ω) ≤ t ≤ f(ω),

1 if f(ω) ≤ t ≤ g(ω).

So∫
Ω

∫
R
|Tf(ω, t)− Tg(ω, t)|q dt dµ(ω) =

∫
Ω

|f(ω)− g(ω)| dµ(ω) = ‖f − g‖1 .

So ‖Tf − Tg‖qq = ‖f − g‖1. This shows that Tf ∈ Lq(Ω× R).

If ρ1(t) = ρ2(t) = t1/q, then ρ1(‖f − g‖1) = ‖Tf − Tg‖q = ρ2(‖f − g‖1).

And ρ1(t) → ∞ as t → ∞, and ρ2(t) → 0 as t → 0+ and ρ1(t) > 0 for all
t > 0.

Proposition 1.8. For 1 ≤ p < q < ∞ there exists T : Lp(Ω, µ) → Lq(Ω ×
R, ν;C) = {f : Ω× R→ C : f measurable,

∫
Ω×R |f |

q <∞}, which is simultane-
ously a coarse and a uniform embedding.

Lemma 1.9. For all 0 < α < 2β there exists cα,β > 0 such that

f(x) :=

∫
R

(1− cos(tx))β

|t|α+1
dt = cα,β |x|α.
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Proof. First check the integrand is in L1(R): as t→ 0, (1− cos(tx))β ∼ |t|2β , so
the integrand ∼ |t|2β−α−1, so is integrable on, say, (−1, 1), since 2β−α−1 > −1.
As |t| → ∞, (1− cos(tx))β is bounded, so the integrand is ∼ |t|−α−1, which is
integrable on R \ (−1, 1), since −α− 1 < −1.

For x > 0,

f(x) = xα
∫
R

(1− cos(tx))β

|tx|α+1
x dt = xα

∫
R

(1− cos(s))β

|s|α+1
x dt = xαf(1).

Also, f(0) = 0, f(−x) = f(x) for all x. So f(x) = |x|αf(1) for all x.

Proof of Proposition 1.8. [A possible attempt is Tf(ω, t) = (1−cos(tf(ω)))1/2

|t|(p+1)/q .

Then ∫
R
|Tf(ω, t)|q dt =

∫
R

(1− cos(tf(ω)))q/2

|t|p+1
dt = ‖f(ω)‖p .

The problem is taking Tf − Tg. The clever thing is that T is exponential.]
Define

Tf(ω, t) =
1− eitf(ω)

|t|(p+1)/q
.

For θ ∈ R,
∣∣1− eiθ∣∣ =

√
(1− cos θ)2 + sin2 θ =

√
2− 2 cos θ =

√
2(1− cos θ)1/2.

Then

‖Tf‖qq =

∫
Ω

∫
R

2q/2(1− cos(tf(ω)))q/2

|t|p+1
dt dµ(ω)

=

∫
Ω

2q/2Cp,q/2|f(ω)|p dµ(ω) by Lemma 8, α = p, β = q/2

= 2q/2Cp,q/2 ‖f‖
p
p .

Given f, g ∈ Lp(Ω), ∣∣∣eitf(ω − eitg(ω)
∣∣∣ =

∣∣∣1− eit(f(ω)−g(ω))
∣∣∣ .

Apply above computation with f replaced with f − g to get

‖Tf − Tg‖qq = 2q/2Cp,q/2 ‖f − g‖
p
p .

Take ρ1(t) = ρ2(t) =
√

2C
1/q
p,q/2t

p/q.

Corollary 1.10. For 1 ≤ p < q < ∞ there exists T : Lp → Lq which is a
simultaneously coarse and uniform embedding.

Apply proposition 8 with (Ω, µ) = ([0, 1], λ) to get embedding Lp → Lq([0, 1]×
R;C). Then Lq([0, 1]× R;C) ↪→2 Lq([−1, 1]× R) by f 7→ f̃ where

f̃(s, t) =

{
Re f(s, t) s ∈ (0, 1]

Im f(−s, t) s ∈ [−1, 0).

Since Lq([−1, 1]× R) is separable, it embeds isometrically into Lq.
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Definition. Given families (Mα)α∈A of metric spaces, a family fα : Mα → Nα
a family of coarse embeddings is uniformly coarse if there exists increasing
ρ1, ρ2 : R+ → R+ such that ρ1(t)→∞ as t→∞ and

ρ1(d(x, y)) ≤ d(f(x), f(y)) ≤ ρ2(d(x, y)) ∀x, y ∈M,∀α ∈ A.

There are many connections of metric embeddings with other fields of
mathematics, for example in geometry. The following two statements are non-
examinable.

Theorem (Yu). If M is a uniformly discrete metric space (every element is
separated by at least δ > 0) with bounded geometry (the number of points in
any radius R is bounded by some B(R))and M coarsely embeds into Hilbert
space, then the coarse Baum-Connes conjecture holds for M .

Theorem (Kaspanov,Yu). Same M , if M coarsely embeds into a uniformly
convex Banach space then the coarse geometric Novikov conjecture hods for M .

10
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2 Fréchet embeddings, Aharoni’s theorem

Theorem 2.1 (Fréchet embedding). Any metric space M embeds isometrically
into `∞(M). If |M | = n < ∞ then it isometrically embeds into `n−1

∞ . If M is
separable, then it embeds isometrically into `∞ = `∞(N).

Proof. Fix x0 ∈ M . Define f : M → `∞(M) by f(x) = d(·, x)− d(·, x0). Then
for all y ∈ M , |f(x)(y)| = |d(y, x) − d(y, x0)| ≤ d(x, x0). So f(x) ∈ `∞(M).
Observe that for every x, z ∈M , ‖f(x)− f(z)‖∞ = ‖d(·, x)− d(·, z)‖∞ ≤ d(x, z)
by the triangle inequality. To get the lower bound, ‖f(x)− f(z)‖∞ ≥ |f(x)(z)−
f(z)(z)| = d(x, z).

In fact we can isometrically embedM into `∞(M\{x0}). IfM = {x0, ..., xn−1},
then M → `n−1

∞ , x 7→ d(·, x) works.
If M is separable, take a countable dense S ⊂M . Then S embeds isometri-

cally into `∞. This extends to an isometric embedding M → `∞ (given x ∈M ,
there exists xn ∈ S xn → x. Let f(x) = lim f(xn). Since f(xn) Cauchy this
limit exists. Check that this definition is independent of the choice of sequence).

Another proof: Let f : M → `∞(M) be an isometric embedding. Then
X = spanf(M) is a separable Banach space. By Proposition 1.2, X ↪→1 `∞.

Definition. Let m∞(n) be the least m such that every n-element metric space
embeds isometrically into `m∞. By Theorem 2.1, m∞(n) ≤ n− 1 for all n ∈ N.

Aim. There exists c > 0, m∞(n) ≥ n− cn2/3 log n for all n ≥ 2 (due to K Ball).

Background.

(i) Ramsey Theory: ∀t ∈ N ∃n ∈ N if edges of Kn are red-blue coloured, then
there exists a monochormatic copy of Kt in Kn. Let R(t) be the least n
that works. It is easy to see that R(t) ≤ 4t. It is also known that R(t) ≥ ct
for some c > 1. Given graphs H1, H2, let R(H1, H2) be the least n s.t.
whenever edges of Kn are red-blue coloured, either there exists a red copy
of H1 or there exists a blue copy of H2 inside of Kn. So R(t) = R(Kt,Kt).
We can see that this exists. If t = max{|H1|, |H2|} (the order |G| of a
graph is the number of vertices), then R(H1, H2) ≤ R(t).

(ii) A graph G = (V,E) is bipartite if there exists a partition V = V1 ∪ V2 s.t.
∀x, y ∈ V , xy ∈ E =⇒ x ∈ V1, y ∈ V2 or x ∈ V2, y ∈ V1. The vertices
V1,2 are called vertex classes. If E = {xy : x ∈ V1, y ∈ V2}, then G is
the complete bipartite graph. This is denoted KV1,V2

. Denote Km,n = any
KV1,V2

with |V1| = m, |V2| = n. Observe K2,2 = C4.

(iii) Given a graph G, its complement Ḡ has vertex set V (Ḡ) = V (G), and
E(Ḡ) is the complement of E(G), i.e. xy ∈ E(Ḡ) ⇐⇒ xy /∈ E(G).

Definition. For a graph G, define a metric ρ:

ρ(x, y) =


0 if x = y

1 if xy ∈ E
2 otherwise.

Lemma 2.2. If (G, ρ) embeds isometrically into `k∞, then edges of Ḡ can be
covered by ≤ k complete bipartite subgraphs of Ḡ.

11
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Proof. Let f : (G, ρ)→ `k∞ be isometric. Let αi = maxx∈G f(x)i, βi = minx∈G f(x)i,
i = 1, ..., k. Observe αi−βi = maxx, y ∈ G(f(x)i−f(y)i) ≤ maxx,y∈G ‖f(x)− f(y)‖∞ ≤
2. Let I = {i = 1, ..., k : αi − βi = 2}. Then xy ∈ E(Ḡ) ⇐⇒ ∃i ∈
I|f(x)i − f(y)i| = 2 ⇐⇒ ∃i ∈ If(x)i = αi, f(y)i = βi or vice versa.

Let Vi1 = {x : f(x)i = αi} and Vi2 = {x : f(x)i = βi}. Then E(Ḡ) =⋃
i∈I E(KVi1,Vi2), and |I| ≤ k.

Theorem 2.3. There exists C > 0, ∀n ≥ 2, m∞(n) ≥ n− Cn2/3 log n.

Proof. We will use the following result: ∃α > 0, R(C4,Kt) > α(t/ log t)3/2

(Spencer uses probabilistic method). Now there exists b > 0,∀n if t = dbn2/3 log ne,
then n < α(t/ log t)3/2 < R(C4,Kt). [Roughly: n = (t/ log t)3/2 =⇒ t =
n2/3 log t, so log t = 2/3 log n + log log t, log t ∼ log t − log log t ∼ log n. So
t ∼ n2/3 log n.] Fix n ∈ N, let t = dbn2/3 log ne. So n < R(C4,Kt), so there
exists a red-blue colouring of Kn without red C4 or blue Kt. Let G be the blue
graph. Let k = m∞(n). Since (G, ρ) embeds isometrically into `k∞, by Lemma
2.2, Ḡ = red graph is covered by ≤ k complete bipartite subgraphs. Since
C4 = K2,2 6⊂ Ḡ, one vertex class in each complete bipartite subgraph is of size 1.
So there exists ≤ k vertices s.t. every edge in Ḡ is adjacent to one of them. Since
Kt 6⊂ G, it follows that n ≤ k+t−1, so k = m∞(n) ≥ n−t+1 ≥ n−Cn2/3 log n
for some absolute constant C.

Remark. Since R(t) > Ct for some C > 1, this method won’t give better than
n− C log n lower bound on m∞(n).

Aim. n−m∞(n)→∞ as n→∞. (Pretrov, Solyanov(?), Zatitskivy(?))

Lemma 2.4 (Non-linear Hahn-Banach). Let M be a metric space, A ⊂ M ,
f : A → R a Lipschitz map with constant L. Then there exists a Lipschitz
extension f̃ : M → R of f with constant L.

Proof. Fix x0 ∈M \A. Define f̃ : A ∪ {x0} → R by

f̃(x) =

{
f(x) x ∈ A
α x = x0.

We need to choose the right α ∈ R. Want

|α− f(x)| ≤ Ld(x0, x) ∀x ∈ A,

i.e.,
f(y)− Ld(y, x0) ≤ α ≤ f(x) + Ld(x, x0) ∀x, y ∈ A.

Such α exists if

f(y)− Ld(y, x0) ≤ f(x) + Ld(x, x0) ∀x, y ∈ A (∗).

Indeed, then take
α = sup

y∈A
{f(y)− Ld(y, x0)}.

To see (*),

f(y)− f(x) ≤ Ld(x, y) ≤ Ld(x, x0) + Ld(x0, y) ∀x, y ∈ A.

If M \A is finite or countable, then apply above recursively to get an extension.
In general, use Zorn’s Lemma to get a maximal extension (M̃, f̃). By above,
M̃ = M .

12
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Proposition 2.5. If A is a subset of a finite metric space M , and there exists an

isometric embedding f : A→ `
|A|−k
∞ , then there exists an isometric embedding

g : M → `
|M |−k
∞ .

Proof. Let fi(x) = f(x)i, 1 ≤ i ≤ |A| − k. Then each fi is 1-Lipschitz so
by Lemma 2.4, there exists a 1-Lipschitz extension gi : M → R. Enumerate
M \ A as yi, |A| − k + 1 ≤ i ≤ |M | − k and let gi(x) = d(x, yi), x ∈ M . Then

g : M → `
|M |−k
∞ , g(x) = (gi(x))

|M |−k
i=1 is an isometric embedding.

Background.

(i) Some more Ramsey Theory: For s ≥ 2, n ∈ N, K
(s)
n = {A ⊂ [n] : |A| = s},

[n] = {1, ..., n}. e.g. K
(2)
n = Kn. Then Ramsey says ∀s,∀t,∃n if K

(s)
n is

red-blue coloured, then there exists a monochromatic copy of K
(s)
t , i.e.

∃A ⊂ [n], |A| = t s.t. A(s) = {B ⊂ A : |B| = s} is monochromatic.

Also ∀s,∀t, ∀c,∃n if K
(s)
n is c-coloured then ∃ monochromatic copy of K

(s)
t .

(ii) Recall that a tree T is a connected, acyclic graph. Equivalently, ∀x, y ∈ T ,
∃ unique path x to y. If diam(T ) = maxx, y ∈ Td(x, y) ≤ 4, then there
exists c ∈ T ∀x d(c, x) ≤ 2. Call this c a centre of T . Vertices in
Γ(c) = {a ∈ T : ac ∈ E} are the main vertices. Every other vertex is
connected to a unique main vertex.

(iii) Oriented graph. An orientation of a graph G is an assignment of direction
for each edge: if e = xy ∈ E(S), there are two choices −→xy or −→yx. This
is called alternating if ∀x either ∀y ∈ Γ(x) we have −→xy (x is a source) or
∀y ∈ Γ(x) we have −→yx (x is a sink). [The name comes from an alternating
path, because once we make a choice on one edge, all the other edges
are alternating in direction.] A connected graph has 0 or 2 alternating
orientations. It has 0 iff it has an odd cycle, i.e. not bipartite. A tree has
exactly two alternating orientations.

(iv) A metric space {x1, ..., xn} is generic if the
(
n
2

)
distances d(xi, xj), 1 ≤

i < j ≤ n are linearly independent over Q.

Theorem 2.6. For every k ∈ N, there exists N ∈ N for all n ≥ N , m∞(n) ≤
n− k.

Proof. Step 1. We can restrict to generic metric spaces. Proof. Let M =
{x1, ..., xn} with metric d be an arbitrary metric space. For j ∈ N, we can pick
αrs ∈ ( 1

2j ,
1
j ), 1 ≤ r < s ≤ n s.t. dj(xr, xs) = d(xr, xs) + αrs defines a generic

metric.
Suppose ∀j,∃ isometric embedding fj : ({x1, ..., xn}, dj) → `m∞ for some m.

WLOG im(fj) is bounded independent of j. By compactness, after passing to a
subsequence, we have f(xr) = limj→∞ fj(xr) exists ∀r. Then f : (M,d)→ `m∞
is an isometric embedding.

From now on, M is an n-element generic metric space and the elements of
M are real numbers.

Step 2. Assume f : M → R is 1-Lipschitz. We define a graph G(f) with
vertex set M and xy ∈ E ⇐⇒ |f(x)− f(y)| = d(x, y). We will orient an edge
xy s.t. for −→xy we have f(x)− f(y) = d(x, y).

13



2 Fréchet embeddings, Aharoni’s theorem III Metric Embeddings

Example. f(x) = d(x, a), then this is a star with centre a and every edge
pointing to it. For x 6= y in M \ {a}, f(x)− f(y) < d(x, y).

We have functions f1, ..., fm : M → R, f : M → `m∞ given by f(x) =
(fi(x))mi=1. Then f is an isometric embedding ⇐⇒ the fi are 1-Lipschitz,
∀x 6= y,∃i, xy ∈ E(G(fi)). So M embeds isometrically into `m∞ ⇐⇒ the edges
of the complete graph on M can be covered by at most m Lipschitz graphs.

Step 3. Let T be a tree on M with diam(T ) ≤ 4. For fixed x0 ∈ T , α ∈ R,
alternating orientation of T , consider the unique function f : M → R where
f(x0) = α, f(x)− f(y) = d(x, y) for all −→xy ∈ E(T ). Then f is 1-Lipschitz ⇐⇒
for every path wxyz in T , d(w, x) + d(y, z) < d(x, y) + d(w, z). [We only need
⇐ direction.]

Proof. Given x, y ∈ T , we need |f(x)− f(y)| ≤ d(x, y). If dT (x, y) = 0 or 1,
then this is true [dT is the graph distance on T .]

If we have a path xzy, then |f(x) − f(y)| = |f(x) − f(z) + f(z) − f(y)| =
|d(x, z)− d(z, y)| < d(x, y) [here we use orientation.]

If we have a path xwzy then |f(x)− f(y)| = |f(x)− f(w) + f(w)− f(z) +
f(z)− f(y)| = |d(x,w)− d(w, z) + d(z, y)|. If this = d(x,w)− d(w, z) + d(z, y)
then < d(x, y) by assumption. If this = −d(x,w) + d(w, z)− d(z, y) then by the
triangle inequality this is < d(x, z)− d(z, y) < d(x, y).

If we have a path xuwzy then |f(x)− f(y)| = |d(x, u)− d(u,w) + d(w, z)−
d(z, y)|. WLOG this = d(x, y)− d(u,w) + d(w, z)− d(z, y) because we have an
even number of terms. By the assumption, this < d(x, z)− d(z, y) and by the
triangle inequality, this < d(x, y). Thus we have proved step 3.

A tree T on M is admissible if it has diam ≤ 4 and satisfies the assumption
in step 3.

Step 4. Given distinct points c, a1, ..., am in M , there exists a unique ad-
missible tree on M with centre c and main vertices a1, ..., am. Denote this by
T (c; a1, ..., am).

Proof. Given x ∈M \ {c, a1, ..., am}, x can be joined to main vertex a ⇐⇒
for every main vertex b 6= a we have d(x, a) + d(c, b) < d(a, c) + d(x, b), i.e.

d(x, a)− d(a, c) < d(x, b)− d(c, b).

So a is uniquely determined.
Step 5. We colour M (4) using as colours elements of S3 as follows: given

w < x < y < z in M , let R1 = d(w, x) + d(y, z), R2 = d(w, y) + d(x, z),
R3 = d(w, z) + d(x, y). We give wxyz colour ijk if Ri > Rj > Rk. This is a
6-colouring of M (4).

Main Claim. ∀k ∈ N,∀c ∈ S3,∃tc ∈ N, every (any) monochromatic metric
space of size tc and colour c can be covered by ≤ tc − k admissible trees.

From main claim, let t = maxc∈S3 tc. By Ramsey ∃N s.t. if K
(4)
N is 6-

coloured, then there exists a monochromatic K
(4)
t . So given n ≥ N , an n-element

metric space M , there exists a colour c ∈ S3 and A ⊂ M , |A| = tc s.t. A is
monochromatic. By main claim, the complete graph on A can be covered by

|A| − k admissible trees, so by step 2, A embeds isometrically into `
|A|−k
∞ . By

Proposition 2.5, M embeds isometrically into `M−k∞ . So done. It remains to
check the main claim.

Recall the Main Claim: ∀c ∈ S3,∀k, ∃t every metric space M with |M | = t
and colour c can be coloured by t − k admissible trees [edges of the complete
graph of M ].
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Proof of Main Claim:

Case 1, c = 213. Then there does not exist M of colour c of size ≥ 5 (t = 5
will do). To see this, assume the contrary and aim for a contradiction. Fix
u < w < x < y < z in M . Then

d(u,w) + d(x, y) > d(u, y) + d(w, x);

d(w, x) + d(y, z) > d(w, z) + d(x, y);

d(u, y) + d(w, z) > d(u,w) + d(y, z).

Adding these gives 0 > 0, a contradiction.

Case 2, c = 312. Same; just replace > with <.

Case 3, c = 132. Mini claim: Assume if |M | = n, colour 132, then all but m
edges of KM can be covered by s admissible trees. Then if |M | = n+ 2
of colour 132, then all but m − 1 edges of KM can be covered by s + 2
admissible trees.

Proof of mini claim. |M | = n, colour 132 and we have s trees that cover
all but m edges. Let ab, a < b be one of these edges. Let |M ′| = n + 2,
colour 132. WLOG M ′ = M ∪ {a′, b′}, where a < a′ < b′ < b and
M ∩ ((a, a′] ∪ [b′, b)) = ∅. Extend the s trees to the whole of M ′. By step
4, add T (a; a′, b), T (b; a′, b′). Every x ∈ M ′ \ {a, a′, b} is joined to a′ in
T (a; a′, b) Every x ∈M ′ \ {b, a′, b′} is joined to b′ in T (b; a′, b′). �

Apply mini claim: start with |M | = k and s = 0, m =
(
k
2

)
. Apply mini

claim m times to get M ′ with t = |M ′| = k + 2
(
k
2

)
= k2, s = 2

(
k
2

)
= t− k,

m = 0.

Case 4, c = 123. We prove Main Claim by induction on k. For k = 1, t = 1 will
do. I have 0 edges so 0 trees will do. Let k ≥ 1 and assume t works for k. For
k+1, we prove that 2t+3 works. Take M = {−1, 0, 1, 2, ..., t+1, t+2, ..., 2t+
1}. Consider T (0;−1, 2), T (1; 0, 2), T (t + 1 + i; i, i + 1), 1 ≤ i ≤ t. This
covers all edges except perhaps edges between vertices in {t+ 2, ..., 2t+ 1}.
These can be covered by t− k trees by the induction hypothesis. So we
need 2 + t+ t− k = 2t+ 2− k = |M | − (k + 1).

Case 5, c = 231. We show t = 2k works for k. Take M = {−k, ...,−1, 1, ..., k},
take trees T (−i;−k,−k + 1, ...,−i− 1, 1, ..., k), 1 ≤ i ≤ k. This works [a
bit fiddly and uninteresting].

Case 6, c = 321. t = 4k + 1 works. M = {0, 1, ..., 4k}, take trees T (0; i, 4k +
1 − i), 1 ≤ i ≤ 2k, T (i; 2k + i, 2k + i + 1, ..., 4k + 1, i) 1 ≤ i ≤ k. So the
number of tree is 3k = |M | − (k + 1).

Remark. m∞(n) = least m s.t. every n-element subset of some L∞(Ω, µ)
embeds isometrically into `m∞.

We define for 1 ≤ p < ∞, mp(n) = least m s.t. every n-element subset of
some Lp(Ω, µ) embeds isometrically into `mp .
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Remark. Note m1(n) ≤ n! (Proposition 1.4), m2(n) = n− 1 (Example Sheet).

Theorem 2.7. For all 1 ≤ p <∞ and for all n ≥ 2, mp(n) ≤
(
n
2

)
.

Remark. For 1 ≤ p < 2, this is essentially best possible. [Example sheet:
mp(2n+ 1) ≥ n.]

Lemma 2.8 (Carathéodory’s Theorem). Given L ⊂ RN , then convL =

{
∑N
i=0 tixi : xi ∈ L, ti ≥ 0,∀i,

∑N
i=0 ti = 1}. It follows that convL = convL if L

is compact.

Proof. Given x ∈ convL, we write x =
∑m
i=1 tixi. WLOG m > N + 1, ti > 0,∀i.

Then x1, ..., xm are affinely dependent – this means x1 − x2, x1 − x3, ..., x1 − xm
are linearly dependent. There exists λ1, ..., λm not all zero with

∑
λi = 0,∑

λixi = 0. For any s ∈ R,
∑

(ti − sλi) = 1,
∑

(ti − sλi)xi = x. For s > 0,
ti − sλi ≥ 0 if λi ≤ 0. So we take s = min{ti/λi : λi > 0} (∃i, λi > 0). Now
ti − sλi ≥ 0,∀i and ∃i, ti − sλi = 0.

Proof of Theorem 2.7. Fix n ≥ 2. Given an n-tuple M = (x1, ..., xn) in some
Lp(Ω, µ), let θM = (‖xi − xj‖pp)1≤i<j≤n ∈ RN whereN =

(
n
2

)
. Let C = {θM : M

is an n-tuple in some Lp(Ω, µ)}.
C is a cone: θ ∈ C, t > 0 =⇒ tθ ∈ C. Suppose M = (x1, ..., xn) is an

n-tuple in Lp(Ω, µ), M ′ = (y1, ..., yn) in Lp(Ω
′, µ′). Then consider zi = (xi, yi) ∈

Lp(Ωq Ω′). Then

‖zi − zj‖pp = (θM )ij + (θM ′)ij ∀1 ≤ i < j ≤ n.

So θM + θM ′ ∈ C.
Let

K = C ∩

θ ∈ RN :
∑

1≤i<j≤n

θij = 1

 .

Say θ ∈ C is linear if there exists (t1, ..., tn) ∈ Rn s.t. θij = |ti − tj |p. Let

L = {θ ∈ K : θ is linear}

=

(|ti − tj |p)1≤i<j≤n : t1, ..., tn ∈ R,
∑

1≤i<j≤n

|ti − tj |p = 1.


Note L is compact. K is convex so convL ⊂ K.

Given θ ∈ K, say θ = (‖xi − xj‖pp)1≤i<j≤n, where x1, ..., xn ∈ Lp(Ω, µ).

Can approximate xi with simple function yi s.t. ϕ = (‖yi − yj‖pp) ∈ K. So

we have a measurable partition Ω =
⋃R
r=1Ar of Ω s.t. yi|Ar is constant ∀i, r.

Let ϕr = (‖yi|Ar − yj |Ar‖
p
p)1≤i<j≤n. Then ϕr is linear and ϕ =

∑R
r=1 ϕr. Let

αr =
∑

1≤i<j≤n(ϕr)ij . Then
∑R
r=1 αr = 1. So ϕ =

∑R
r=1 αr(ϕr/αr) ∈ convL.

This shows K ⊂ convL. By Lemma 2.8, K = convL, and every θ ∈ C is a
sum θ =

∑N
r=1 θr, where θr is linear for all r. Note {θ :

∑
θij = 1} is (N − 1)-

dimensional. For each r, there exists tri ∈ R with θr = (|tr,i − tr,j |p)1≤i<j≤n.
If θ = θM , M = (x1, ..., xn) ∈ Lp(Ω, µ)n, define f : M → `Np by using these as
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coordinates: f(xi) = (tr,i)
R
r=1. Then one line to check that this works. For

1 ≤ i < j ≤ n,

‖f(xi)− f(xj)‖pp =
∑
r

|tr,i − tr,j |p =
∑
r

(θr)ij = θij = ‖xi − xj‖pp .

Theorem 2.9 (Aharoni’s Theorem). For any ε > 0, any separable metric space
embeds into c0 with distortion ≤ 3 + ε.

Motivation. Given Banach spaces X,Y , if X bilipschitzly embeds into Y , must
X be isomorphically embed into Y ? Yes, if Y is separable and there exists a
Banach Space W such that Y ∼ W ∗. Theorem 9 shows that in general, the
answer is no.

Notation. (i) In a metric space M , for x ∈ M and δ > 0 let Bδ(x) = {y ∈
M : d(y, x) ≤ δ}. A ⊂M is δ-dense in M if ∀x ∈M,d(x,A) < δ.

(ii) Given a set S, let c0(S) = {f ∈ `∞(S) : ∀ε > 0{s ∈ S : |f(s)| >
ε} is finite}. So c0 = c0(N) ∼= c0(S) for S countably infinite.

Idea. We will have a countable set S and a subset MS ⊂ M and we use
maps f : M → c0(S), f(x) = (d(x,MS))s∈S . Fix δ > 1, for x 6= y in M ,
δn ≤ d(x, y) ≤ δn+1 for some n ∈ Z. We will have c ∈ M (a centre). One of x
or y, say x, has d(c, x) > δn/2. We will partition M \Bδn/2(c).

Lemma 2.10. Let M be a separable metric space, λ > 2, a > 0, N ⊂M . Then
there exists subsets M1,M2, ... of N such that

(i) ∀x ∈ N, ∃i, d(x,Mi) < a;

(ii) ∀x ∈M , the set {i : d(x,Mi) < (λ− 1)a} is finite;

(iii) ∀i, diam(Mi) ≤ 2λa.

Proof. WLOG a = 1 (just replace the distance d by d/a). M is separable, hence
so is N , so there exists a countable sets

Z ⊂ N, which is 1-dense in N,

Y ⊂M, which is 1-dense in M.

WLOG Z ⊂ Y (replace Y by Z ∪ Y ). Enumerate Y as y1, y2, y3, .... Let
Mi = (Bλ(yi) ∩ Z) \

⋃
j<iMj . Then ∀i,Mi ⊂ Z ⊂ N , and ∀i,Mi ⊂ Bλ(yi). So

diam(Mi) ≤ 2λ. This shows (iii).
Given x ∈ N , there exists i such that yi ∈ Z and d(x, yi) < 1. Then

yi ∈ Bλ(yi) ∩ Z ⊂
⋃i
j=1Mj . So there exists j ≤ i such that d(x,Mj) < 1. This

shows (i).
Given x ∈ M , there exists i0 such that d(x, yi0) < 1. If d(x,Mi) < λ − 1,

then d(yi0 ,Mi) < λ by the triangle inequality. For i > i0, y ∈ Mi. Since
yi0 ∈

⋃
j≤i0 Mj and Mi ∩

⋃
j≤i0 Mj = ∅, we have d(yi0 , y) ≥ λ so d(yi0 ,Mi) ≥ λ.

So {i : d(x,Mi) < λ− 1} has at most i0 elements. This shows (ii).
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2 Fréchet embeddings, Aharoni’s theorem III Metric Embeddings

Proof of Theorem 9, Assonad. Given separable metric space M and ε > 0,
choose λ > 2, η > 0 such that 3λ

λ−2 (1 + η) < 3 + ε [first choose λ so that
3λ
λ−2 < 3 + ε]. For k ∈ Z, let ak = (1 + η)−k. Fix a centre c ∈ M , let
Mk = M \B3λak/2(c). Apply Lemma 10 to M , N = Mk, a = ak to get subsets
Mk,1,Mk,2, ... satisfying (i),(ii),(iii) in Lemma 10 with Mk,i in place of Mi.

Let S = {(k, i) : k ∈ Z, i = 1, 2, ...}. For x ∈ M , let fk,i(x) = [(λ − 1)ak −
d(x,Mk,i)] ∨ 0. Let f(x) = (fk,i(x))(k,i)∈S .

We first prove that f(x) ∈ c0(S). Since (λ− 1)ak → 0 as k →∞, enough to
show that for any s ∈ Z, T = {(k, i) : fk,i(x) ≥ (λ−1)as} is finite. For k > s, we
have fk,i(x) ≤ (λ− 1)ak < (λ− 1)as so (k, i) /∈ T for all k > s and for all i. For
the other direction, since ak →∞ as k → −∞, ∃r < s s.t. d(x, c) < (λ2 + 1)ar.

For k < r, d(x, c) < (λ2 + 1)ak, so ∀i,

d(x,Mk,i) ≥ d(x,M \B3λak/2(c)) ≥ 3λak
2
− d(x, y) > (λ− 1)ak,

so ∀k < r, ∀i, fk,i(x) = 0, so (k, i) /∈ T . Finally, by Lemma 10, for each k,
{i : fk,i(x) > 0} = {i : d(x,Mk,i) < (λ − 1)ak} is finite. So T ⊂

⋃s
k=1{i :

fk,i(x) > 0} is finite.
Now we have f : M → c0(S). This is clearly 1-Lipschitz. For the lower bound,

fix x 6= y in M and choose k such that

3λak < d(x, y) ≤ 3λak(1 + η).

By the triangle inequality, both x and y cannot belong to B3λak/2(c), so WLOG
x ∈Mk. By Lemma 10(i), there exists i such that d(x,Mk,i) < ak. So fk,i(x) ≥
(λ− 1)ak − ak = (λ− 2)ak.

Pick w ∈Mk,i, d(x,w) < ak. For any z ∈Mk,i we have

d(y, z) ≥ d(y, x)− d(x,w)− d(w, z) > 3λak − ak − diam(Mk,i) ≥ (λ− 1)ak,

because diam(Mk,i) ≤ 2λak. So d(y,Mk,i) ≥ (λ− 1)ak and fk,i(y) = 0. So

‖f(x)− f(y)‖∞ ≥ |fk,i(x)− fk,i(y)|
≥ (λ− 2)ak

=
3λak(1 + η)

3λ(1 + η)
(λ− 2)

>
d(x, y)

3 + ε
.

Remark. Here we are embedding into c+0 (S) = {f : S → R+ : f ∈ c0(S)}.
Pelant showed that

sup
M

inf
f : M→c+0

dist(f) = 3,

where the supremum is over all separable metric space M and the infimum is
over all bilipschitz embeddings f .

Kalton and Lancien showed that

sup
M

inf
f : M→c0

dist(f) = 2.
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3 Bourgain’s Embedding Theorem III Metric Embeddings

3 Bourgain’s Embedding Theorem

For metric spaces X,Y , let

cY (X) = inf{dist(f) : f : X → Y a bilipschitz embedding}.

If Y = Lp, we write cp(X) = cLp(X), the Lp-distortion of X. c2(X) is called the
Euclidean distortion of X. By Proposition 1.1, cp(X) ≤ c2(X) for any finite X.

Theorem 3.1 (Dvoretzky’s Theorem). ∀n ∈ N,∀ε > 0,∃N = N(n, ε), s.t. every
Banach space Y with dimY ≥ N contains a (1 + ε)-isomorphic copy of `n2 .

Remark. (i) N ≤ exp(Cn/ε2) for some absolute constant C.

(ii) cY (X) ≤ c2(X) for every finite metric space and every infinite dimensional
Banach space Y .

Aim. c2(X) ≤ C log |X| for every finite X (Bourgain’s embedding theorem).

From now on we fix a metric space X with |X| = n. Let PX be the set of
all partitions of X [pairwise disjoint non-empty subsets of X whose union is
X]. For P ∈ PX , the elements of P are called clusters. For x ∈ X, we let P (x)
be the unique cluster to which x belongs. A stochastic decomposition of X is
a probability measure Ψ on PX . Given ∆ > 0, ε : X → (0, 1], we say Ψ is an
(ε,∆)-padded decomposition if

(i) ∀P ∈ PX if Ψ(P ) > 0 then ∀C ∈ P , diam(C) < ∆ [clusters can’t be too
big];

(ii) ∀x ∈ X,Ψ(d(x,X \ P (x)) ≥ ε(x)∆) ≥ 1
2 .

Write supp(Ψ) = {P ∈ PX : Ψ(P ) > 0}, the support of Ψ.

Lemma 3.2. Let Ψ be an (ε,∆)-padded decomposition of X, and let 1 ≤ q <∞.
Then there exists 1-Lipschitz map f : X → `q s.t.

(i) ‖f(x)‖q ≤ ∆,∀x ∈ X (technical condition);

(ii) ‖f(x)− f(y)‖q ≥ Cε(x)d(x, y),∀x, y such that d(x, y) ∈ [∆, 2∆), where C

is an absolute constant (I think C = 1
16 ) (lower Lipschitz condition).

Definition. For Banach spaces X1, X2, ..., for 1 ≤ q < ∞ define
(⊕

i≥1Xi

)
q

to be the space of sequences (xi)i≥1 s.t.
∑
i≥1 ‖xi‖

q
< ∞. This is a Banach

space with norm

‖(xi)‖ =

∑
i≥1

‖xi‖q
1/q

.

Can also define
(⊕

i≥1Xi

)
∞

; ‖(xi)‖ = supi≥1 ‖xi‖. This has subspace
(⊕

i≥1Xi

)
c0

of sequences (xi)i≥1 such that ‖xi‖ → 0.

If Xi = `q for all i, then
(⊕

i≥1Xi

)
q

∼= `q.
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3 Bourgain’s Embedding Theorem III Metric Embeddings

Proof of Lemma 2. Fix P ∈ supp(Ψ). Let C1, C2, ..., Cm(P ) be the clusters of P .

Let U1, ..., U2m(P ) be all possible unions of the Cj . Fix 1 ≤ j ≤ 2m(P ) and define
fP,j : X → R by

fP,j(x) =

{
d(x,X \ P (x)) ∧∆ if x ∈ Uj ;
0 otherwise.

[Here ∧ denotes the minimum.] We have fP,j(x) ≤ ∆ for all x ∈ X.
Fix x, y ∈ X. If P (x) 6= P (y) then

0 ≤ fP,j(x), fP,j(y) ≤ d(x, y).

If P (x) = P (y), then either x, y ∈ Uj , in which case

fP,j(z) = d(z,X \ P (x)) ∧∆, z = x, y,

or x, y /∈ Uj in which case fP,j(x) = fP,j(y) = 0. In all cases |fP,j(x)− fP,j(y)| ≤
d(x, y). So fP,j is 1-Lipschitz.

Do this for each j, and define fP : X → `2
m(P )

q by

fP (x) =
(

2−m(P )/qfP,j(x)
)2m(P )

j=1
.

So for all x,

‖fP (x)‖q =

2m(P )∑
j=1

2−m(P )fP,j(x)q

1/q

≤ ∆

and for all x, y,

‖fP (x)− fP (y)‖q =

2m(P )∑
j=1

2−m(P ) |fP,j(x)− fP,j(y)|q
1/q

≤ d(x, y).

So fP is 1-Lipschitz.
Finally define

f : X →

 ⊕
P∈supp(Ψ)

`2
m(P )

q


`q

↪→∼= `q,

by

f(x) =
(

Ψ(P )1/qfP (x)
)
P∈supp(Ψ)

.

For all x ∈ X,

‖f(x)‖q =

(∑
P

Ψ(P ) ‖fP (x)‖q
)1/q

≤ ∆.

Similarly, f is 1-Lipschitz.
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3 Bourgain’s Embedding Theorem III Metric Embeddings

Fix x, y such that d(x, y) ∈ [∆, 2∆). Let

E = {P ∈ supp(Ψ) : d(x,X \ P (x)) ≥ ε(x)∆}.

Fix P ∈ E. If x ∈ Uj and y /∈ Uj then|fP,j(x)− fP,j(y)| ≥ d(x,X \ P (x)) ≥
ε(x)∆.

For 1
4 of values of j we have x ∈ Uj , y /∈ Uj (note P (x) 6= P (y), since

∀C ∈ P,diam(C) < ∆ ≤ d(x, y)). So

‖fP (x)− fP (y)‖q ≥

 ∑
j,x∈Uj ,y /∈Uj

2−m(P ) |fP,j(x)− fP,j(y)|q
1/q

≥ ε(x)∆4−1/q.

Finally,

‖f(x)− f(y)‖ ≥

(∑
P∈E

Ψ(P ) ‖fP (x)− fP (y)‖q
)1/q

≥ ε(x)∆4−1/qΨ(E),

and this is

≥ ε(x)∆

41/q2
≥ ε(x)

41/q4
d(x, y) ≥ 1

16
ε(x)d(x, y).

Definition. Define the set of relevant scales to be

S(X) = {` ∈ Z : ∃x, y ∈ X, d(x, y) ∈ [2`, 2`+1)},

and R(X) = |S(X)|.

Example. If X is a connected graph with the graph distance, then R(X) ≤
dlog2 ne.

Definition. A map f : X → Y , given K, τ > 0, is called a scaled-τ embedding
with deficiency K if f is 1-Lipschitz and d(f(x), f(y)) ≥ K−1d(x, y) for all x, y
such that d(x, y) ∈ [τ, 2τ).

Proposition 3.3. Given K > 0, 1 ≤ q <∞, assume ∀` ∈ S(X),∃f` : X → `q a
scale-2` embedding with deficiency K. Then Cq(X) ≤ KR(X)1/q.

Proof. Define f : X →
(⊕

`∈S(X) `q

)
∼= `q by f(x) = (f`(x))`∈S(X). For all

x, y, ‖f(x)− f(y)‖ =
(∑

`∈S(X) ‖f`(x)− f`(y)‖q
)1/q

≤ R(X)1/qd(x, y). So f is

R(X)1/q-Lipschitz. Given x 6= y, there exists ` ∈ S(X) s.t. d(x, y) ∈ [2`, 2`+1).
Then

‖f(x)− f(y)‖ ≥ ‖f`(x)− f`(y)‖ ≥ 1

K
d(x, y).

So cq(X) ≤ dist(f) ≤ KR(X)1/q.

Corollary 3.4. If ∀` ∈ S(X) there exists an (ε, 2`)-padded decomposition of X
with ε(x) ≥ 1

K for all x, then cq(X) ≤ CKR(X)1/q (1 ≤ q <∞).

Proof. Lemma 2 + Proposition 3.
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3 Bourgain’s Embedding Theorem III Metric Embeddings

Remark. Actually, cq(X) ≤ CKR(X)1/2∧1/q, because cq(X) ≤ c2(X).

Theorem 3.5 (Existence of a decomposition). For every ` ∈ Z,∃(ε, 2`)-padded
decomposition of X with

ε(x) =

[
16 + 16 log

(
|B2`(x)|
|B2`−3(x)|

)]−1

.

Remark. Note ε(x) ≥ C 1
logn , so by Corollary 4, c2(X) ≤ C(log n)

√
R(X).

Proof of Theorem 5. Fix ` ∈ Z and set ∆ = 2`. Fix an ordering < on X.
Consider a pair (π, α) where π ∈ Sn (the symmetry group of X) and α ∈ ( 1

4 ,
1
2 )

and π, α are chosen uniformly at random and independently. To (π, α) there
corresponds an element P ∈ PX with clusters

Cy = Bα∆(y) \
⋃

z:π(z)<π(y)

Bα∆(z), y ∈ X.

We throw away the empty clusters. This gives a random partition, so we have a
stochastic decomposition.

Now we check this gives us an (ε,∆)-padded decomposition. Note that
diam(Cy) ≤ 2α∆ < ∆ for ally y ∈ X. Now fix x ∈ X, t ≤ ∆

8 . Let B (B for Bad)
be the event that d(x,X \ P (x)) ≤ t, i.e. Bt(x) 6⊂ P (x). The aim is to show
that P(B) ≤ 1

2 for t = ε(x)∆. Then we would be done.
Note that B occurs ⇐⇒ Bt(x) 6⊂ Cy for all y. Assume y ∈ X and

Bt(x) ∩ Cy 6= ∅. Then Bt(x) ∩Bα∆(y) 6= ∅. So d(x, y) ≤ α∆ + t < ∆
2 + ∆

8 < ∆
by the triangle inequality. So y ∈ B∆(x). Let b = |B∆(x)| and y1(= x), y2, ..., yb
be the elements of B∆(x) in order of increasing distance to x.

Let y ∈ X such that this necessary condition holds: d(x, y) ≤ α∆+t and π(y)
is minimal in <. So Bt(x) is disjoint from

⋃
z:π(z)<π(y) Cz =

⋃
z:π(z)<π(y)Bα∆(z)

(by minimality). So Bt(x) ⊂ Cy ⇐⇒ Bt(x) ⊂ Bα∆(y).
Now if B happens, then Bt(x) 6⊂ Bα∆(y) and hence

d(x, y) > α∆− t ≥ ∆

4
− ∆

8
=

∆

8
.

Let a = |B∆/8(x)|. Then B∆/8(x) = {y1, ..., ya}. So the y above is yk for some
k with a < k ≤ b.

So we proved that B ⊂
⋃b
k=a+1Ek where Ek is the event that d(x, yk) ≤

α∆ + t with π(yk) is <-minimal with this property, and d(x, yk) > α∆− t.
Let Ik = [d(x, yk)− t, d(x, yk) + t). Then Ek =⇒ α∆ ∈ Ik.

So P(B) ≤
∑b
k=a+1 P(Ek) =

∑b
k=a+1 P(Ek|α∆ ∈ Ik)P(α∆ ∈ Ik). If α∆ ∈ Ik

then d(x, yj) ≤ d(x, yk) ≤ α∆ + t for 1 ≤ j ≤ k.
If in addition Ek occurs, we must have π(yk) < π(yj) for all j < k. So

P(B) ≤
b∑

k=a+1

P(π(yk) < π(yj),∀j < k|α∆ ∈ Ik)P(α∆ ∈ Ik)

=

b∑
k=a+1

P(π(yk) < π(yj),∀j < k)P(α∆ ∈ Ik) by independence of α, π

≤
b∑

k=a+1

1

k

8t

∆
≤ 8t

∆
log

b

a
≤ 1

2
if t = ε(x)∆.
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3 Bourgain’s Embedding Theorem III Metric Embeddings

So we have our (ε,∆)-padded decomposition as desired.

Notation. For functions a, b on a set S and values in R+, a . b means ∃
absolute constant C such that a(s) ≤ Cb(s) for all s ∈ S.

Theorem 3.6 (Gluing Lemma). Let 1 ≤ q < ∞,K > 0. Assume ∀` ∈ Z,∃ a
scale-2` embedding f` : X → `q of deficiency K and with ‖f`(x)‖ ≤ 2` for all
x ∈ X. Then cq(X) . K1−1/q(log n)1/q.

Let’s see how the Gluing Lemma implies Bourgain’s Embedding Theorem.

Corollary 3.7 (Bourgain’s Embedding Theorem). c2(X) . log n.

Proof. By Theorem 5, there exists (ε, 2`)-padded decomposition for X, ∀`Z where
ε(x) ≥ C 1

logn . By Lemma 2, for all ` ∈ Z ∃ scale-2` embedding f` : X → `2

with deficiency K ≤ C log n and ‖f`(x)‖ ≤ 2` for all x ∈ X. By Theorem 6,
c2(X) ≤ C(log n)1−1/2(log n)1/2 = C log n.

Now we will prove the Gluing Lemma. But first we need some notation.

Notation. For x, y ∈ X, ` ∈ Z, let

γ`(x, y) =

{
x if |B2`(x)| ≥ |B2`(y)|
y otherwise.

To prove the Gluing Lemma, we need two further lemmas.

Lemma 3.8. Assume ∀` ∈ Z there exists 1-Lipschitz h` : X → `q (1 ≤ q <∞)
s.t. ‖h`(x)‖ ≤ 2` for all x ∈ X. Then there exists H : X → `q s.t.

(i) Lip(H) . (log n)1/q;

(ii) ∀x, y ∈ X,∀` ∈ Z if d(x, y) ∈ [2`, 2`+1), then

‖H(x)−H(y)‖ ≥
(

log2

|B2`+1(γ`−3(x, y))|
|B2`−3(γ`−3(x, y))|

)1/q

‖h`(x)− h`(y)‖ .

Proof. Let ρ : R → R+ be the function that is 0 on (−∞, 1
16 ] then piecewise

linear connecting ( 1
8 , 1), (8, 1) and (16, 0) and then 0 on [16,+∞). Note that

Lip(ρ) ≤ 16.

1
16

1
8

8 16

1
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3 Bourgain’s Embedding Theorem III Metric Embeddings

Fix t ∈ {0, 1, 2, ..., dlog2 ne − 1}. For x ∈ X let

R(x, t) = sup{R : |BR(x)| ≤ 2t}.

This is 1-Lipschitz in x: given x, y ∈ X, if |BR(x)| ≤ 2t, then |BR−d(x,y)(y)| ≤ 2t

and so R(y, t) ≥ R− d(x, y). Take sup over R, R(y, t) ≥ R(x, t)− d(x, y).
Define

Ht : X →

(⊕
`∈Z

`q

)
q

∼= `q

by

Ht(x) =

(
ρ

(
R(x, t)

2`

)
h`(x)

)
`∈Z

.

Well-defined: Fix x ∈ X. Then ρ
(
R(x,t)

2`

)
= 0 if 2`−4 ≥ R(x, t) or R(x, t) ≥ 2`+4.

Choose m ∈ Z s.t. 2m ≤ R(x, t) < 2m+1. Then ρ
(
R(x,t)

2`

)
= 0 provided

2`−4 ≥ 2m+1 or 2m ≥ 2`+4, so if ` ≥ m + 5 or ` ≤ m − 4. So Ht(x) has ≤ 8
non-zero coordinates. So it is in `q.

Next we show Ht is Lipschitz with Lip(Ht) ≤ 16× 17. Note∥∥∥∥ρ(R(x, t)

2`

)
h`(x)− ρ

(
R(y, t)

2`

)
h`(y)

∥∥∥∥
≤
∣∣∣∣ρ(R(x, t)

2`

)
− ρ

(
R(y, t)

2`

)∣∣∣∣ ‖h`(x)‖+ ρ

(
R(y, t)

2`

)
‖h`(y)− h`(x)‖

≤ 16
1

2`
d(x, y)2` + d(x, y)

= 17d(x, y).

Since both Ht(x), Ht(y) have ≤ 8 nonzero coordinates, we are done.
Now define

H : X →

dlog2(n)e−1⊕
t=0


q

∼= `q

by H(x) = (Ht(x))
dlog2 ne−1
t=0 . It’s clear that Lip(H) . (log n)1/q. This proves

(i).
To show (ii), fix x, y ∈ X, choose ` s.t. d(x, y) ∈ [2`, 2`+1). Then

‖Ht(x)−Ht(y)‖ ≥ ‖h`(x)− h`(y)‖ (∗)

provided ρ
(
R(x,t)

2`

)
= ρ

(
R(y,t)

2`

)
= 1 which holds if R(x, t), R(y, t) ∈ [2`−3, 2`+3].

This will follow if |B2`−3(x)| ≤ 2t, |B2`+3(x)| > 2t (same for y). So (∗) holds
for all t such that

2t ∈ [|B2`−3(x)| , |B2`+3(x)|) ∩ [|B2`−3(y)| , |B2`+3(y)|).

WLOG γ`−3(x, y) = x. Since d(x, y) < 2`+1, B2`+1(x) ⊂ B2`+3(y).
So (∗) holds if

2t ∈ [|B2`−3(x)| , |B2`+1(x)|).
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So

‖H(x)−H(y)‖ =

(∑
t

‖Ht(x)−Ht(y)‖

)1/q

≥
(

log2

|B2`+1(x)|
|B2`−3(x)|

)1/q

‖h`(x)− h`(y)‖ .

Lemma 3.9. Let 1 ≤ q <∞. Then there exists H : X → `q such that

(i) Lip(H) . (log n)1/q;

(ii) ∀x, y ∈ X, ∀` ∈ Z, if d(x, y) ∈ [2`, 2`+1) and

log2

(
|B2`−1(x)|
|B2`−2(x)|

)
< 1,

then ‖H(x)−H(y)‖ & d(x, y).

Proof. Fix t ∈ {1, 2, ..., dlog2 ne}. Let W be a random subset of X where each
x ∈ X is placed in W independently at random with probability 2−t. Let
Pt be the resulting probability measure on P(X), the power set of X. So
Pt(W ) = 2−t|W |(1− 2−t)n−|W | for any W ⊂ X. Note that Lq(P(X),Pt) ∼= `2

n

q

by

g ↔
(
Pt(W )1/qg(W )

)
W∈P(X)

.

Note

‖g‖qq =

∫
P(X)

|g(W )|q dPt(W )

=
∑
W

Pt(W )|g(W )|q

=
∥∥∥(Pt(W )1/qg(W ))W

∥∥∥q
q
.

Define Ht : X → Lq(P(X),Pt) ∼= `2
n

q by Ht(x) = (d(x,W ))W . Then for all
x, y ∈ X,

‖Ht(x)−Ht(y)‖ =

(∫
P(X)

|d(x,W )− d(y,W )|q dPt(W )

)1/q

≤ d(x, y),

so Ht is 1-Lipschitz.

Define H : X →
(⊕dlog2 ne

t=1 `2
n

q

)
q
↪→∼= `q by H(x) = (Ht(x))

dlog2 ne
t=1 . Then

Lip(H) . (log n)1/q. This shows (i).
To see (ii), fix x, y ∈ X, ` ∈ Z such that d(x, y) ∈ [2`, 2`+1) and

log2

(
|B2`−1(x)|
|B2`−2(x)|

)
< 1.
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Fix s ∈ {1, 2, ..., dlog2 ne} such that 2s−1 ≤ |B2`−1(x)| ≤ 2s. Note 2s ≥
|B2`−2(x)| ≥ 2s−2. Consider 4 events:

Ex = {W : d(x,W ) ≤ 2`−2} = {W : W ∩B2`−2(x) 6= ∅},
Fx = {W : d(x,W ) > 2`−1} = {W : W ∩B2`−1(x) = ∅},

Ey = {W : d(y,W ) ≤ 3

2
2`−2} = {W : W ∩B 3

2 2`−2(y) 6= ∅},

Fy = P(X) \ Ey = {W : W ∩B 3
2 2`−2(y) = ∅}.

Since d(x, y) ≥ 2`, B2`−1(x) ∩ B 3
2 2`−2(y) = ∅, and hence any of Ex, Fx is

independent of Ey, Fy.
Now we calculate the probabilities.

Ps(Ex) = 1− (1− 2−s)|B2`−2 (x)| ≥ 1− (1− 2−s)2s−2

≥ 1− e−1/4 > 0,

Ps(Fx) = 1− (1− 2−s)|B2`−1 (x)| ≥ 1− (1− 2−s)2s ≥ (1− 1

2
)2 =

1

4
> 0.

So

‖H(x)−H(y)‖ ≥ ‖Hs(x)−Hs(y)‖

=

(∫
P(X)

|d(x,W )− d(y,W )|q dPs(W )

)1/q

≥

(∫
Ex∩Fy

+

∫
Ey∩Fx

(· · · )

)1/q

& (2(`−3)qPs(Fy) + 2(`−3)qPs(Ey))1/q

& 2`+1 ≥ d(x, y),

as required. [Here we have used independence.]

Proof of Theorem 6. Apply Lemma 8 with h` = f` to get H, which we will call
F : X → `q such that Lip(F ) . (log n)1/q, and ∀x, y ∈ X, ` ∈ Z if d(x, y) ∈
[2`, 2`+1), then

‖F (x)− F (y)‖ ≥
(

log2

|B2`+1(γ`−3(x, y))|
|B2`−3(γ`−3(x, y))|

)1/q

‖f`(x)− f`(y)‖ .

Remember ‖f`(x)− f`(y)‖ ≥ 1
K d(x, y).

From Theorem 5 and Lemma 2, we get ∀` ∈ Z a 1-Lipschitz g` : X → `q such
that ‖g`(x)‖ ≤ 2` for all x and ∀x, y ∈ X, if d(x, y) ∈ [2`, 2`+1), then

‖g`(x)− g`(y)‖ &
[
16 + 16 log

(
|B2`(x)|
|B2`−3(x)|

)]−1

d(x, y).

Apply Lemma 8 with h` = g` to get H which we call G here such that (i)
and (ii) of Lemma 8 hold.

Let H be the function from Lemma 9. Define Φ: X → (`q ⊕ `q ⊕ `q)q ∼= `q
where Φ(x) = (F (x), G(x), H(x)). Clearly we have Lip(Φ) . (log n)1/q. Fix
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x, y ∈ X with d(x, y) ∈ [2`, 2`+1) for some ` ∈ Z. Let A = log2

(
|B2`+1 (x)|
|B2`−3 (x)|

)
and

assume γ`−3(x, y) = x. If A < 1 then by Lemma 9, ‖H(x)−H(y)‖ & d(x, y). If
A ≥ 1 then ‖F (x)− F (y)‖ ≥ A1/q 1

K d(x, y).

‖G(x)−G(y)‖ & A1/q

1 +A
d(x, y).

Consider A ≥ K and A ≤ K to get K−1+1/qd(x, y) lower bound. So dist(Φ) .
K1−1/q(log n)1/q.
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4 Lower Bounds on Distortions, Poincaré Inequal-
ities

In Section 3, we proved that c2(X) . log |X| for any finite metric space X. Is
this best possible? One might think that c2(X) .

√
log |X|.

Definition. For normed spaces X,Y we define the Banach-Mazur distance

d(X,Y ) = inf{‖T‖
∥∥T−1

∥∥ : T : X → Y is an onto isomorphism}.

[By convention inf ∅ =∞.]

Note 1 ≤
∥∥T ◦ T−1

∥∥ ≤ ‖T‖∥∥T−1
∥∥, so 1 ≤ d(X,Y ). Also d(X,Z) ≤

d(X,Y ) × d(Y,Z) for all X,Y, Z. [If T : X → Y, S : Y → Z, then ‖ST‖ ≤
‖S‖ ‖T‖.] If X ∼= Y then d(X,Y ) = 1. The converse is false in general.
Aside. Let Mn be the class of all n-dimensional normed spaces (we identify
spaces that are isometrically isomorphic). On Mn, log d is a metric and Mn is
compact – the Banach-Mazur compaction.

Theorem (John’s Lemma). For any n-dimensional normed space X, d(X, `n2 ) ≤√
n.

Remark. (i) For all X,Y n-dimensional normed spaces, d(X,Y ) ≤ n. [∃c >
0,∀n, diam(Mn) ≥ cn (Gluskin)].

(ii) For a general finite metric space X, the analogue of dimension, is log |X|.
This is to do with entropy. By analogy with John’s Lemma, one might
hope c2(X) .

√
log |X|.

Proof of John’s Lemma. We can think of X as Rn with some norm ‖·‖. Let
K = BX = {x ∈ X : ‖x‖ ≤ 1}. This is a symmetric, convex body. [Symmetric
means ∀x ∈ K, −x ∈ K, i.e. K = −K. Body means compact with nonempty
interior.] Conversely, if K is a symmetric convex body, then K = BX where
X = (Rn, ‖·‖) and ‖x‖ = inf{t > 0 : x ∈ tK}. An ellipsoid is a subset
E ⊂ Rn such that E = T (B`n2 ) where T : Rn → Rn is a linear bijection.

Then n−1/2E ⊂ K ⊂ E ⇐⇒ d(X, `n2 ) ≤
√
n (first inequality is saying

‖T‖ ≤
√
n, second inequality is saying

∥∥T−1
∥∥ ≤ 1, T : `n2 → X.) John’s Lemma

is equivalent to: for every symmetric convex body K ⊂ Rn, there exists an
ellipsoid, n−1/2E ⊂ K ⊂ E.

By compactness, there exists an ellipsoid E of minimal volume such that
K ⊂ E. We will show n−1/2E ⊂ K. By applying a linear bijection, WLOG E =
B`n2 [by replacing K with T−1(K)]. Assume for contradiction that n−1/2E 6⊂ K.

Then there exists z ∈ ∂K = SX such that ‖z‖2 <
1√
n

. By Hahn-Banach, there

exists a linear functional f : Rn → R such that f(z) = 1 and |f(x)| ≤ 1 for
all x ∈ K. Let H = {x : f(x) + 1}. Then z ∈ H and K is between H and
−H. After applying a rotation, WLOG H = {x ∈ Rn : x1 = 1

c} for some
c >
√
n (as H contains a point with ‖·‖ < 1√

n
). We still have K ⊂ E = B`n2

and K ⊂ {x : |x1| ≤ 1
c}. Let a > b > 0, Ea,b = {x : a2x2

1 +
∑n
i=2 b

2x2
i ≤ 1}

which is the image of B`n2 under the map with matrix diagonal ( 1
a ,

1
b , ...,

1
b ). We

have vol(Ea,b) = 1
abn−1 vol(E). For x ∈ K, a2x2

1 +
∑n
i=2 b

2x2
i = (a2 − b2)x2

1 +∑n
i=1 b

2x2
i ≤ a2−b2

c2 + b2 (using K ⊂ E). Need a, b such that a2−b2
c2 + b2 ≤ 1 and
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abn−1 > 1. Then we would be done because vol(Ea,b) < vol(E) and K ⊂ Ea,b
which contradicts the minimality of vol(E).

For a given 0 < a < c, set b =
√

c2−a2
c2−1 . Then a2−b2

c2 + b2 = 1. Let

f(a) = abn−1 = a
(
c2−a2
c2−1

)n−1
2

. Then f(1) = 1,

f ′(a) =

(
c2 − a2

c2 − 1

)n−1
2

+ a
n− 1

2

−2a

c2 − 1

(
c2 − a2

c2 − 1

)n−1
2

=

(
c2 − a2

c2 − 1

)n−1
2 −1(

c2 − a2

c2 − 1
− (n− 1)a2

c2 − 1

)
=

(
c2 − a2

c2 − 1

)n−1
2 −1(

c2 − na2

c2 − 1

)
.

Since c2 > n, f ′(1) > 0, there exists a > 1 such that f(a) > f(1) = 1.

Definition. Let X,Y be metric spaces. A Poincaré inequality for functions
f : X → Y is one of the form∑

u,v∈X
au,vΨ(d(f(u), f(v))) ≥

∑
u,v∈X

bu,vΨ(d(f(u), f(v))), (∗)

where a, b are X×X matrices, i.e. functions a, b : X×X → R+ of finite support,
and Ψ is an increasing function R+ → R+.

Define the Poincaré ratio

Pa,b,Ψ(X) =

∑
u,v bu,vΨ(d(u, v))∑
u,v au,vΨ(d(u, v))

, whenever this is defined.

Proposition. Let 1 ≤ p < ∞, Ψ(t) = tp. Assume X,Y are metric spaces
satisfying for some a, b the Poincaré inequality (∗) above for all functions f : X →
Y . Then cY (X) ≥ Pa,b,Ψ(X)1/p.

Proof. Let f : X → Y be a bilipschitz embedding [if there isn’t any, then
cY (X) =∞]. Then

1 ≥
∑
u,v bu,vd(f(u), f(v))p∑
u,v au,vd(f(u), f(v))p

≥ 1

dist(f)p

∑
u,v bu,vd(u, v)p∑
u,v au,vd(u, v)p

where the first inequality is by (∗). Hence dist(f)p ≥ Pa,b,Ψ(X)p. Taking inf
over all f gives the result.

Example. In `2,

‖x1 − x3‖2 + ‖x2 − x4‖2 ≤ ‖x1 − x2‖2 + ‖x2 − x3‖2 + ‖x3 − x4‖2 + ‖x4 − x1‖2 ,

for all x1, x2, x3, x4 ∈ `2. This is a Poincaré inequality for functions C4 → `2.

Hence by the proposition above, c2(C4) ≥
√

22+22

4 =
√

2. This can be achieved

by the obvious embedding. So c2(C4) =
√

2.

To show that there is always a Poincaré inequality that gets arbitrarily close
to the distortion, we need Hahn-Banach separation theorems (see Section 4).
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Hahn-Banach Separation Theorems

To study Poincaré inequalities, we need to use the Hahn-Banach Separation
Theorems. This section is a digression from Metric Embeddings.

Let X be a real vector space. A functional p : X → R is positive homogeneous
if p(tx) = tp(x),∀t ≥ 0,∀x ∈ X, and subadditive if p(x+y) ≤ p(x)+p(y),∀x, y ∈
X. For example, a seminorm or a norm on X.

Theorem 4.1. Let X, p be as above. Let Y be a subspace of X, g : Y → R
a linear map such that g(y) ≤ p(y),∀y ∈ Y . Then there exists a linear map
f : X → R such that f |Y = g and f(x) ≤ p(x) for all x ∈ X.

Proof. (This is similar to proof of Lemma 2.4). Let P = {(Z, h) : Z ≤ X,h : Z →
R linear, Y ⊂ Z, h|Y = g, h(z) ≤ p(z),∀z ∈ Z}. This is a poset with (Z1, h1) ≤
(Z2, h2) ⇐⇒ Z1 ⊂ Z2 and h2|Z1

= h1. Note that (Y, g) ∈ P so P 6= ∅. Given
a chain C = {(Zi, hi) : i ∈ I} in P (so C is linearly ordered) with C 6= ∅, then
Z =

⋃
i∈I Zi and h : Z → R is defined by hZi = hi, i ∈ I gives an upper bound

(Z, h) for C. By Zorn’s Lemma, P has a maximal element (W,k). We show that
W = X, then we’re done by taking f = k. Assume not. Fix x0 ∈ X \W and let
W1 = W +Rx0. Fix α ∈ R and define k1 : W1 → R by k1(w+λx0) = k(w) +λα
for w ∈ W,λ ∈ R. We need α so that k1(w + λx0) ≤ p(w + λx0 for all w ∈ W
and λ ∈ R. Then (W,k) � (W1, k1), contradicting maximality of (W,k).

Since k1 is linear and p is homogeneous, enough to get

k1(w + x0) ≤ p(w + x0), k1(w − x0) ≤ p(w − x0) ∀w ∈W.

So we need

k(w) + α ≤ p(w + x0), k(w)− α ≤ p(w − x0) ∀w ∈W.

So we need

k(z)− p(z − x0) ≤ α ≤ p(w + x0)− k(w) ∀w, z ∈W.

We need k(z)−p(z−x0) ≤ p(w+x0)−k(w),∀w, z ∈W . Then α = infw∈W (p(w+
x0)−k(w)) will do. But k(z)+k(w) = k(z+w) ≤ p(z+w) = p(z−x0 +w+x0) ≤
p(z − x0) + p(w + x0),∀w, z ∈W .

Corollary 4.2. Let X be a real normed space.

(i) If Y is a subspace and g ∈ Y ∗ then there exists f ∈ X∗ s.t. f |Y = g and
‖f‖ = ‖g‖. [Hahn-Banach Extension Theorem]

(ii) Given x0 ∈ X, x0 6= 0, there exists f ∈ SX∗ such that f(x) = ‖x0‖.
[Norming functional for x0]

Proof. (i) Let p(x) = ‖g‖ ‖x‖ for x ∈ X. Then p is a seminorm. We have
g(y) ≤ p(y) for all y ∈ Y . By Theorem 2, there exists a linear f : X → R
such that f |Y = g and f(x) ≤ ‖g‖ ‖x‖ for all x ∈ X. Apply this to −x
to get −f(x) = f(−x) ≤ ‖g‖ ‖x‖. So |f(x)| ≤ ‖g‖ ‖x‖ for all x ∈ X. So
f ∈ X∗ and ‖f‖ ≤ ‖g‖. Since f |Y = g, ‖f‖ = ‖g‖.

(ii) Define g : Y := Rx0 → R by g(λx0) = λ ‖x0‖ for λ ∈ R. Then g ∈ Y ∗
and ‖g‖ = 1. So by (i), there exists f ∈ SX∗ such that f |Y = g, and so
f(x0) = ‖x0‖.
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Remark 4.3. If Z is a complex vector space, let ZR be Z viewed as a real
vector space. Then for a complex normed space X, the map (X∗)R → (XR)∗,
f 7→ Re f is an isometric isomorphism. Thus (i) follows in the complex case.

Given a normed space X and a convex subset C of X with 0 ∈ IntC, the
Minkowski functional of C is µC : X → R defined by

µC(x) = inf{t > 0 : x ∈ tC}.

This is well-defined: given x ∈ X, x
n → 0 ∈ IntC, so ∃n, xn ∈ C, i.e. x ∈ nC.

Example: If C = BX , then µC = ‖·‖ as x ∈ tBX ⇐⇒ ‖x‖ ≤ t.

Lemma 4.4. Let X,C be as above. Then µC is positive homogeneous and
subadditive. Moreover,

{x ∈ X : µC(x) < 1} ⊂ C ⊂ {x ∈ X : µC(x) ≤ 1},

with equality in the first inclusion if C is open, and with equality in the second
inclusion if C is closed.

Proof. For positive homogeneity, e need µC(tx) = tµC(x) for all t ≥ 0 and x ∈ X.
For t = 0, we need µC(0) = 0. This is true since x ∈ tC for all t > 0. If t > 0,
then for any s > 0, tx ∈ sC ⇐⇒ x ∈ s

tC, so µC(tx) = tµC(x).
For subadditivity, fix x, y ∈ X and let s > µC(x), t > µC(y). Then by

definition, there exists s′, µC(x) ≤ s′ < s such that x ∈ s′C. Then x
s =

s′

s
x
s′ + (1 − s′

s )0 ∈ C, since C is convex. So x ∈ sC. Also y ∈ tC. Thus
x+y
s+t = s

s+t
x
s + t

s+t
y
t ∈ C. This shows µC(x+ y) ≤ s+ t. Taking inf over all s, t

we get subadditivity.
If 1 > µC(x), then by above x ∈ C, showing the first inclusion. If x ∈ C,

then µC(x) ≤ 1 by definition, showing the second inclusion. Assume C is open.
If x ∈ C, then since (1 + 1

n )x → x and C is open, then there exists n with
(1 + 1

n )x ∈ C, i.e. x ∈ n
n+1C, so µC(x) ≤ n

n+1 < 1. Now assume C is closed
and µC(x) ≤ 1. Then µC( n

n+1x) ≤ n
n+1 < 1 so n

n+1x ∈ C for all n ∈ N. Since
n
n+1x→ x and C is closed, x ∈ C.

Theorem 4.5. Let X be a real normed space, and let C be an open convex
subset of X with 0 ∈ C. For x0 ∈ X \ C, there exists f ∈ X∗ such that
f(x) < f(x0) for all x ∈ C. (Note that f 6= 0.)

Proof. Define Y = Rx0 and g : Y → R by g(λx0) = λµC(x0). Then g is
linear and for λ ≥ 0, g(λx0) = λµC(x0) = µC(λx0), and for λ < 0, g(λx0) =
λµC(x0) ≤ 0 ≤ µC(λx0). By Lemma 4 and Theorem 2, there exists a linear map
f : X → R such that f |Y = g and f(x) ≤ µC(x) for all x ∈ X. Since x0 /∈ C,
µC(x0) ≥ 1. So for all x ∈ C, f(x) ≤ µC(x) < 1 ≤ µC(x0) = f(x0) [here we
used C is open]. Since 0 ∈ C, C open, ∃δ > 0 such that δBX ⊂ C. So f(x) ≤ 1
on δBX , but this is symmetric, so |f(x)| ≤ 1. So f ∈ X∗.

Remark. If Lemma 4, if C is symmetric, then µC is a seminorm. If in addition,
C is bounded, then µC is a norm [we used this in the proof of Theorem 1].

Corollary 4.6 (The Hahn-Banach Separation Theorems). Let A,B be non-
empty, disjoint convex sets in a normed space X.
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(i) If A is open, then there exists f ∈ X∗ and α ∈ R such that f(x) < α ≤ f(y)
for all x ∈ A, for all y ∈ B.

(ii) If A is compact, and B is closed, then ∃f ∈ X∗ and α ∈ R such that
supA f < α < infB f .

Remark. In both cases, the hyperplane {x ∈ X : f(x) = α} separates A and
B.

Proof. (i) Fix a0 ∈ A, b0 ∈ B. Let C = A−B−a0 +b0, x0 = −(a0−b0). Then
C is convex and open, 0 ∈ C and x0 /∈ C since A ∩B = ∅. By Theorem 5,
∃f ∈ X∗ such that f(x) < f(x0) for all x ∈ C. So f(x− y + x0) < f(x0)
for all x ∈ A, y ∈ B, i.e., f(x) < f(y) for all x ∈ A, y ∈ B. Let α = infB f .
So certainly we have f(y) ≥ α for all y ∈ B. Also, f(x) ≤ α for all x ∈ A.
Since f 6= 0, we can fix u ∈ X such that f(u) > 0. For x ∈ A, since A is
open, ∃n ∈ N such that x+ 1

nu ∈ A. Then f(x) < f(x+ 1
nu) ≤ α.

(ii) For x ∈ A, d(x,B) > 0 since B is closed and x /∈ B. Since A is compact,
δ = infx∈A d(x,B) > 0. Then A′ = {x ∈ X : d(x,A) < δ} is an open,
convex set with A′ ∩ B = ∅. [If d(x,A), d(y,A) < δ then ∃u, v ∈ A,
‖x− u‖ , ‖y − v‖ < δ and then ∀t ∈ (0, 1),

‖((1− t)x+ ty)− ((1− t)u+ tv)‖ < δ,

(((1 − t)u + tv) ∈ A), so (1 − t)x + ty ∈ A′]. By (i), ∃f ∈ X∗,∃β ∈ R
such that f(x) < β ≤ f(y) for all x ∈ A′, y ∈ B. As A is compact,
supA f < β ≤ infB f .

Poincaré Inequalities

Now we can show that Poincaré inequalities are worth studying because they
get arbitrarily close to the distortion of f .

Theorem 4.7. Let 1 ≤ p <∞ and X be a finite metric space. Then

cp(X) = sup (Pa,b,tp(X))
1/p

,

where the sup is over all non-negative, non-trivial X ×X matrices a, b for which
the Poincaré inequality∑

u,v∈X
au,v ‖f(u)− f(v)‖pp ≥

∑
u,v∈X

bu,v ‖f(u)− f(v)‖pp (∗)

holds.

Proof. From Proposition 2, cp(X) ≥ sup (Pa,b,tp(X))
1/p

. Taking au,v = bu,v = 1
for all u, v, (∗) holds, and Pa,b,tp(X) = 1, so if cp(X) = 1 then we are done.

Now assume 1 < C < cp(X). Let X = {x1, ..., xn}. Let

B =

{(
‖f(xi)− f(xj)‖pp

)
1≤i<j≤n

: f : X → Lp

}
⊂ RN ,
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where N =
(
n
2

)
. From proof of Theorem 2.7, we know B is a cone, and in

particular, B is convex. Also B 6= ∅ because 0 ∈ B. Let

A =
{

(θij)1≤i<j≤n ∈ RN : ∃r > 0, rd(xi, xj)
p < θij < rCpd(xi, xj)

p,∀i, j
}
.

Then A is open, convex and non-empty since C > 1. Since C < cp(X), we have
A ∩ B = ∅. By Corollary 6, there exists a linear map c : RN → R and α ∈ R
such that c(θ) < α ≤ c(ϕ) for all θ ∈ A,ϕ ∈ B. We have c = (cij)1≤i<j≤n
where c(θ) =

∑
1≤i<j≤n cijθij . Since 0 ∈ B, α ≤ 0. By continuity, c(θ) ≤ α

for all θ ∈ Ā, and 0 ∈ Ā, so 0 ≤ α. Hence α = 0. So c(θ) ≤ 0 ≤ c(ϕ) for all
θ ∈ Ā, ϕ ∈ B. Let aij = max(cij , 0), bij = max(−cij , 0). So cij = aij − bij . We
have ∑

cij ‖f(xi)− f(xj)‖pp ≥ 0,

for all f : X → Lp, i.e.∑
1≤i<j≤n

aij ‖f(xi)− f(xj)‖pp ≥
∑

1≤i<j≤n

bij ‖f(xi)− f(xj)‖pp ,

for all f : X → Lp.
Let

θij =

{
Cpd(xi, xj)

p if cij ≥ 0,

d(xi, xj)
p if cij < 0.

Then θ = (θij) ∈ Ā, so

0 ≥ c(θ) =
∑
ij

aijC
pd(xi, xj)

p −
∑
ij

bijd(xi, xj)
p.

Thus Pa,b,tp(X) ≥ Cp.

Hamming Cube

Recall Hn = {0, 1}n, which is a graph: x = (xi), y = (yi) are joined by an edge
⇐⇒ xi 6= yi for exactly one value of i. So Hn is a metric space with the graph
distance d:

d(x, y) =

n∑
i=1

|xi − yi|.

So Hn is isometrically a subset of `n1 .
Hn is also a probability space with the uniform distribution µ: µ({x}) = 2−n.
We think of {0, 1} as the field F2. Then Hn is the n-dimensional vector space

Fn2 over F2. So in particular, Hn is an abelian group.

Notation. Let (ei)
n
i=1 is the standard basis of Hn = Fn2 . For j = 1, ..., n, let

rj : Hn → R, rj(x) = (−1)xj . This is the jth Rademacher function. Note that
r1, ..., rn are iid random variables on (Hn, µ) with {±1}-valued Rademacher( 1

2 )
distribution. For A ⊂ {1, ..., n}, we define wA : Hn → R, wA =

∏
j∈A rj . These

are the Walsh functions. These are the characters of Hn, i.e. abelian group
homomorphisms Hn → T = {z ∈ C : |z| = 1}.

Lemma 4.8. The Walsh functions form an orthonormal basis of L2(Hn, µ).
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Proof. We have r2
j = 1, so for A,B ⊂ {1, ..., n}, wAwB =

∏
j∈A rj

∏
k∈B rk =∏

j∈A4B rj = wA4B. So if A = B, 〈wA, wA〉 =
∫
Hn

w∅ dµ = 1. If A 6= B,

by independence, 〈wA, wB〉 =
∫
Hn

wA4B dµ =
∏
j∈A4B

∫
Hn

rj dµ = 0. Al-
ternatively, shifting is a measure-preserving transformation. Fix j ∈ A4B,∫
Hn

wA4B(x) dµ(x) =
∫
Hn

wA4B(x+ ej) dµ(x) = −
∫
Hn

wA4B(x) dµ(x). We’re

done as dimL2(Hn, µ) = 2n.

Definition. For f : Hn → R, we let f̂A = 〈f, wA〉 =
∫
Hn

fwA dµ for A ⊂
{1, ..., n}. These are the Fourier coefficients of f with respect to this orthonormal
basis. More generally, for a Banach space X and f : Hn → X, we define
f̂A =

∫
Hn

f(x)wA(x) dµ(x), A ⊂ {1, ..., n}. Normally this would involve the
Bochner integral, but here everything is finite, so this is just a summation.

Lemma 4.9. (a) For any f ∈ L2(Hn, µ) we have

f(x) =
∑

A⊂{1,...,n}

f̂AwA(x), x ∈ Hn,∫
Hn

|f(x)|2 dµ(x) =
∑

A⊂{1,...,n}

|f̂A|2, Parseval’s identity

(b) If X is a Banach space, then for all f : Hn → X we have

f(x) =
∑
A⊂[n]

f̂AwA(x), x ∈ Hn.

If in addition X is a Hilbert space, then∫
Hn

‖f(x)‖2 dµ(x) =
∑
A⊂[n]

∥∥∥f̂A∥∥∥2

Parseval’s identity.

Proof. (a) Follows from Lemma 8. (b) Fix ϕ ∈ X∗. Then

ϕ(f̂A) =

∫
Hn

ϕ(f(x))wA(x) dµ(x) = ϕ̂ ◦ fA ∀A ⊂ [n].

So for any x ∈ Hn, we have, by (a),

ϕ(f(x)) =
∑
A

ϕ̂ ◦ fAwA(x) = ϕ(
∑
A

f̂AwA(x)).

This holds for all ϕ ∈ X∗, so by Hahn-Banach, f(x) =
∑
A f̂AwA(x). True for

all x ∈ Hn.
If X is a Hilbert space, then WLOG dimX <∞. Fix an orthonormal basis

v1, ..., vk of X. Then for 1 ≤ j ≤ k, let fj(x) = 〈f(x), vj〉. By above, taking

ϕ(u) = 〈u, vj〉, f̂jA = 〈f̂A, vj〉 Then by Parseval in X, in L2(Hn, µ), and in X
respectively,∫

Hn

‖f(x)‖2 dµ(x) =

∫
Hn

k∑
j=1

|fj(x)|2 dµ(x) =

k∑
j=1

∑
A

|f̂jA|
2

=
∑
A

∑
j

|〈f̂A, vj〉|2 =
∑
A

‖f̂A‖2.
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Definition. For each 1 ≤ j ≤ n, we define a difference operator ∂j as follows.
For a Banach space X and f : Hn → X, let ∂jf : Hn → X be defined as

(∂jf)(x) =
f(x+ ej)− f(x)

2
.

Lemma 4.10. (i) For 1 ≤ j ≤ n, A ⊂ [n],

∂jwA(x) =

{
−wA(x) j ∈ A
0 j /∈ A.

(ii) For a Banach space X and f : Hn → X,

∂̂jfA =

{
−f̂A j ∈ A
0 j /∈ A.

(iii) If X is a Hilbert space, then for f : Hn → X,

n∑
j=1

∫
Hn

‖∂jf(x)‖2 dµ(x) =
∑
A

|A|‖f̂n‖2.

Proof. (i) We have

ri(x+ ej) =

{
−ri(x) j = i

ri(x) j 6= i.

So

wA(x+ ej) =
∏
i∈A

ri(x+ ej) =

{
−wA(x) j ∈ A
wA(x) j /∈ A.

Hence result follows.

(ii) This is integration by parts:

(∂̂jf)A =

∫
Hn

(∂jf)(x)wA(x) dµ(x)

=
1

2

∫
Hn

f(x+ ej)wA(x) dµ(x)− 1

2

∫
Hn

f(x)wA(x) dµ(x)

=
1

2

∫
Hn

f(x)wA(x+ ej) dµ(x)− 1

2

∫
Hn

f(x)wA(x) dµ(x)

=

∫
Hn

f(x)(∂jwA)(x) dµ(x)

=

{
−f̂A j ∈ A
0 j /∈ A.

(iii) We use Parseval:

n∑
j=1

∫
Hn

‖∂jf(x)‖2 dµ(x) =

n∑
j=1

∑
A

‖(∂̂jf)A‖2

=
∑
A

∑
j

‖(∂̂jf)A‖2

=
∑
A

|A|‖f̂A‖2,
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as required.

Theorem 4.11 (Poincaré inequality for L2-valued functions on Hn). Let e =
e1 + e2 + ...+ en = (1, 1, ..., 1). Then for all f : Hn → L2, we have∫

Hn

‖f(x+ e)− f(x)‖2 dµ(x) ≤ 4

n∑
j=1

∫
Hn

‖(∂jf)(x)‖2 dµ(x).

Proof. For A ⊂ [n], wA(x+ e) = (−1)|A|wA(x). So∫
Hn

‖f(x+ e)− f(x)‖2 dµ(x)

=

∫
Hn

∥∥∥∥∥∑
A

f̂AwA(x+ e)−
∑
A

f̂AwA(x)

∥∥∥∥∥
2

dµ(x) (by Lemma 9)

= 4

∫
Hn

∥∥∥∥∥∥
∑

A:|A| odd

f̂AwA(x)

∥∥∥∥∥∥
2

dµ(x)

= 4
∑

A:|A| odd

‖f̂A‖2 (by Lemma 9)

≤ 4
∑
|A|

|A|‖f̂A‖2

= 4

n∑
j=1

∫
Hn

‖(∂jf)(x)‖2 dµ(x).

Corollary 4.12. c2(Hn) =
√
n.

Remark. |Hn| = 2n, so c2(Hn) =
√

log |Hn|. Compare with the upper bound
c2(Hn) . log |Hn| in Bourgain’s embedding theorem.

Proof of Corollary 12. Hn ⊂ `n2 in the obvious way which gives c2(Hn) ≤
√
n.

By Proposition 2, a lower bound on c2(Hn) is obtained from the Poincaré ratio∫
Hn

d(x+ e, x)2 dµ(x)

4
∑n
j=1

∫
Hn

d(x+ej ,x)2

4 dµ(x)
=
n2

n
= n,

so c2(Hn) ≥
√
n.

From now on, think of Hn as the n-dimensional vector space Fn2 over F2.

Theorem 4.13. For every f : Fn2 → L2 we have the Poincaré inequality:∫
Fn2×Fn2

‖f(x)−f(y)‖2L2
dµ(x) dµ(y) ≤ 2

max{|A|:A6=∅,f̂A 6=0}

n∑
j=1

∫
Fn2
‖∂jf(x)‖2 dµ(x).
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Proof. Without loss of generality, after replacing f with f − f̂∅w∅, can assume
f̂∅ = 0 (recall w∅ = 1). Then by Parseval,

LHS =

∫
Fn2×Fn2

‖f(x)‖2 + ‖f(y)‖2 − 2〈f(x), f(y)〉 dµ(x) dµ(y)

= 2
∑
A

‖f̂A‖2 − 2

∫
Fn2

〈∫
Fn2
f(x) dµ(x), f(y)

〉
dµ(y)

= 2
∑
A

‖f̂A‖2 − 2

∫
Fn2
〈f̂∅, f(y)〉 dµ(y)

= 2
∑
A

‖f̂A‖2.

By Lemma 10,

n∑
j=1

∫
Fn2
‖∂jf(x)‖2 dµ(x) =

∑
A

|A|‖f̂A‖2 ≥ min{|A| : A 6= ∅, f̂A 6= 0}
∑
A

‖f̂A‖2.

Definition. A linear code of Fn2 is a subspace C of Fn2 . We let d(C) =
min{d(x, 0) : x ∈ C, x 6= 0} = d(0, C \ {0}). For x = (xi), y = (yi) in
Fn2 , let 〈x, y〉 =

∑n
i=1 xiyi (operations in Fn2 ). This is a symmetric bilin-

ear form, but 〈x, x〉 = 0 does not imply x = 0. For a subset S ⊂ Fn2 , let
S⊥ = {x ∈ Fn2 : 〈x, s〉 = 0,∀s ∈ S}.

Linear Codes

Lemma 4.14. For a linear code C, dimC + dimC⊥ = n and C⊥⊥ = C.

Proof. Let m = dimC and v1, ..., vm be a basis of C. Define θ : Fn2 → Fm2 by
θ(x) = (〈x, vi〉)mi=1. Then ker θ = C⊥ and so n = dimC⊥ + dim im θ. We
need θ to be onto. For 1 ≤ j ≤ m, let f : Fn2 → F2 be a linear map such that
f(vi) = δij (Kronecker delta). Let yj = f(ej) for 1 ≤ j ≤ n and y = (yj).
Then f(x) =

∑n
j=1 xjf(ej) = 〈x, y〉, so θ(y) = (f(vj))

n
j=1 = ith standard basis

vector of Fm2 . So n = dimC⊥ +m = dimC⊥ + dimC. For the final part: from
definition, C ⊂ C⊥⊥, and dimC⊥⊥ = n− dimC⊥ = dimC, so C = C⊥⊥.

Lemma 4.15. There exists δ ∈ (0, 1
2 ),∃N ∈ N,∀n ≥ N, (m + 1)

(
n
m

)
≤ 2n/8

where m = bδnc.

Proof. First choose δ ∈ (0, 1
2 ) such that δ(2 + log( 2

δ )) < log 2
8 . Then choose

N ∈ N such that bδnc ≥ δn
2 ,∀n ≥ N . Let n ≥ N and m = bδnc. If m = 0 then

we are done, so assume m ≥ 1. Then
(
n
m

)
= n(n−1)(n−2)...(n−m+1)

m! ≤ nm

m! . For

the denominator use log(m!) =
∑m
j=1 log(j) ≥

∫m
1

log x dx = [x log x − x]m1 =

m logm−m+1 ≥ m logm−m. So
(
n
m

)
≤ ( enm )m and (m+1)

(
n
m

)
≤ (m+1)( enm )m.
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Now

log

(
(m+ 1)

(
n

m

))
≤ log(m+ 1) +m(1 + log(n/m))

≤ m(2 + log(n/m)) (log x ≤ x− 1,∀x > 0)

≤ δn(2 + log(2/δ)) (
δn

2
≤ m = bδnc ≤ δn)

≤ log 2

8
n.

Thus (m+ 1)
(
n
m

)
≤ 2n/8.

Lemma 4.16. ∃α > 0,∀n ∈ N,∃ linear code C in Fn2 with dimC ≥ n
4 and

d(C) ≥ αn.

Proof. Let δ,N be as in Lemma 15. If 1 ≤ n ≤ N , choose any C with dimC ≥ n
4 .

Then d(C) ≥ 1 ≥ 1
N n. Now let n > N . We show there exists a linear code C in

Fn2 such that dimC ≥ n
4 and d(C) ≥ δn. So α = min( 1

N , δ) will do.
We choose C greedily. Assume that for some k, 1 ≤ k < n

4 we have a linear
code Ck with dimCk = k and d(Ck) ≥ δn. For k = 1 this holds. We seek a
suitable x ∈ Fn2 \Ck such that putting Ck+1 = span(Ck ∪ {x}) = Ck ∪ (Ck + x),
we have d(Ck+1) ≥ δn. Once we find such x, we continue inductively. Taking
C = Cdn/4e will complete the proof.

We estimate from above the number of unsuitable vectors x. For v ∈ Ck,

|{x : d(v + x, 0) < δn}| = |{x : d(x, 0) < δn}|

=
∑

0≤`<δn

(
n

`

)

≤ (m+ 1)

(
n

m

)
,

where m = bδnc. Note in the range 0 ≤ ` ≤ n
2 ,
(
n
`

)
is increasing, and δ < 1

2 . It
follows that

|{x ∈ Fn2 : ∃v ∈ Ck, d(x+ v, 0) < δn}| =

∣∣∣∣∣ ⋃
v∈Ck

{x ∈ Fn2 : d(x+ v, 0) < δn}

∣∣∣∣∣
≤ 2k(m+ 1)

(
n

m

)
.

If 2k(m+ 1)
(
n
m

)
< 2n − 2k then there is a suitable x, i.e. we need (m+ 1)

(
n
m

)
<

2n−k−1. Now 2n−k−1 > 23n/4−1 ≥ 2n/8, so we are done by choice of δ,N .

From now on, C will be an arbitrary linear code in Fn2 . Let q : Fn2 →
Fn2/C⊥ be the quotient map. Let µ̃ be the image measure induced by µ and
q: µ̃(E) = µ(q−1(E)). Let ρ be the quotient metric on Fn2/C⊥: ρ(q(x), q(y)) =
d(x+ C⊥, y + C⊥) = d(x− y, C⊥) = minv∈C⊥ d(x− y, v).

Lemma 4.17. For every h : Fn2/C⊥ → L1 and for every A ⊂ [n] with A 6= ∅
and |A| < d(C) we have f̂A = 0 where f = h ◦ q.
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Proof. Let v =
∑
i∈A ei. Then v 6= 0 since A 6= ∅ and d(v, 0) = |A| < d(C)¿ So

v /∈ C = C⊥⊥ (Lemma 14). So ∃w ∈ C⊥ such that 〈v, w〉 6= 0, i.e. 〈v, w〉 = 1.
Now

f̂A =

∫
Fn2
f(x)wA(x) dµ(x)

=

∫
Fn2
f(x+ w)wA(x+ w) dµ(x)

(translation invariance of µ)

=

∫
Fn2
f(x)

∏
j∈A

rj(x+ w) dµ(x)

(w ∈ C⊥ so f(x+ w) = hq(x+ w) = hq(x) = f(x))

=

∫
Fn2
f(x)

∏
j∈A

(−1)wjrj(x) dµ(x)

=

∫
Fn2
f(x)(−1)〈v,w〉wA(x) dµ(x)

= −f̂A.

Hence f̂A = 0.

Theorem 4.18 (Poincaré inequality for L1-valued functions on Fn2/C⊥). For
every h : Fn2/C⊥ → L1 we have∫
(Fn2 /C⊥)2

‖h(u)− h(v)‖L1
dµ̃(u) dµ̃(v) ≤ 1

d(C)

n∑
j=1

∫
Fn2 /C⊥

‖∂jh(u)‖L1 dµ̃(u) (∗)

where

∂jh(u) =
h(u+ q(ej))− h(u)

2
,

and u ∈ Fn2/C⊥.

Proof. Let f = h ◦ q. Then (∗) is equivalent to∫
Fn2×Fn2

‖f(x)− f(y)‖L1
dµ(x) dµ(y) ≤ 1

d(C)

n∑
j=1

∫
Fn2

‖∂jf(x)‖L1
dµ(x).

From (proof of) Proposition 1.7, there exists a map T : L1 → L2 such that
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‖Ta− Tb‖L2
= ‖a− b‖1/2L1

. Now∫
Fn2×Fn2

‖f(x)− f(y)‖L1
dµ(x) dµ(y)

=

∫
Fn2×Fn2

‖Tf(x)− Tf(y)‖2L2
dµ(x) dµ(y)

≤ 2

min{|A| : A 6= ∅, f̂A 6= 0}

n∑
j=1

∫
Fn2
‖∂jTf(x)‖2L2

dµ(x) (Theorem 13)

≤ 2

d(C)

n∑
j=1

∫
Fn2
‖∂jTf(x)‖2L2

dµ(x) (Lemma 17)

=
1

d(C)

n∑
j=1

∫
Fn2
‖∂jf(x)‖2L1

dµ(x)

since ‖∂jTf(x)‖2L2
=
‖Tf(x+ej)−Tf(x)‖2L2

4 =
‖f(x+ej)−f(x)‖L1

4 = 1
2‖∂jf(x)‖L1

.

Lemma 4.19. ∃β > 0,∀n ∈ N, if dimC ≥ n
4 then ∀x ∈ Fn2 ,

µ({y : ρ(qx, qy) ≥ βn}) ≥ 1

2
.

Proof. Let n, δ be as in Lemma 15. WLOG N ≥ 8. WLOG x = 0. For

1 ≤ n ≤ N , µ({y : ρ(qy, 0) ≥ n
N }) = µ(Fn2 \ C⊥) = 2n−|C⊥|

2n . From Lemma 14,

dimC⊥ = n− dimC ≤ n− 1, so 2n−|C⊥|
2n ≥ 2n−2n−1

2n = 1
2 . Now let n > N . For

v ∈ C⊥, consider

|{y : d(v, y) < δn}| ≤
∑

0≤`<δn

(
n

`

)
≤ (m+ 1)

(
n

m

)
,

where m = bδnc. So

|{y : ∃v ∈ C⊥, d(y, v) < δn}| = |{y : ρ(qy, 0) < δn}|

≤ 2dimC⊥(m+ 1)

(
n

m

)
≤ 23n/42n/8 ≤ 1

2
2n.

(Here we use n > N ≥ 8). So µ({y : ρ(qy, 0) ≥ δn}) ≥ 1
2 . So β = min(δ, 1

N )
works.

Theorem 4.20. ∃η > 0,∃ sequence (Xn) of metric spaces such that |Xn| → ∞
and c1(Xn) ≥ η log |Xn|.

Remark. Recall c2(X) ≥ c1(X) for any finite metric space. So Theorem 20
says that the upper bound in Bourgain’s Embedding Theorem is best possible
up to constant.
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Proof. By Lemma 16, for every n there exists a linear code C in Fn2 with
dimC ≥ n

4 and d(C) ≥ αn. Let Xn = Fn2/C⊥ with the quotient metric ρ. By

Lemma 14, |Xn| = 2n−dimC⊥ = 2dimC ≥ 2n/4 →∞. By Proposition 2, a lower
bound on c1(Xn) is given by the Poincaré ratio corresponding to the inequality
in Theorem 18. Thus

c1(Xn) ≥
∫
Xn×Xn ρ(u, v) dµ̃(u) dµ̃(v)

1
d(C)

∑n
j=1

∫
Xn

ρ(u+q(ej),u)
2 dµ̃(u)

=

∫
Fn2×Fn2

ρ(q(x), q(y)) dµ(x) dµ(y)

1
2d(C)

∑n
j=1

∫
Fn2
ρ(q(x+ ej), q(x)) dµ(x)

.

It’s clear that the denominator ≤ n
2d(C) ≤

n
2αn = 1

2α . By Lemma 19, for each

x ∈ Fn2 ,
∫
Fn2
ρ(q(x), q(y)) dµ(y) ≥ βn

2 . Hence the numerator is at least βn
2 . Thus

c1(Xn) ≥ βn
2 /

1
2α = αβn ≥ αβ log2 |Xn|.
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5 Dimension Reduction

Theorem 5.1 (Johnson-Lindenstrauss Lemma). There exists a constant C > 0
such that ∀k, n ∈ N,∀ε ∈ (0, 1), if k ≥ Cε−2 log n then any n-element subset of
`2 embeds into `k2 with distortion at most 1+ε

1−ε .

Remark. In the 90’s there was a sudden explosion of citation for this result,
because the computer scientists realised there are many applications in compress
sensing etc. For applications, see Matousek’s lecture notes.

Idea. We will take a random linear map T : `n2 → `k2 and show that for each
x ∈ `n2 , we have (1 − ε)‖x‖2 ≤ ‖Tx‖2 ≤ (1 + ε)‖x‖2 with high probability. It
follows that, given x1, . . . , xn ∈ `n2 , we have

(1− ε)‖xi − xj‖2 ≤ ‖Txi − Txj‖2 ≤ (1 + ε)‖xi − xj‖2

with positive probability. In particular, there exists a suitable map of {x1, . . . , xn}
to `k2 .

Lemma 5.2. Let k, n ∈ N, ε(0, 1). Define T : `n2 → `k2 by the k × n matrix
( 1√

k
Zij)ij where the Zij (1 ≤ i ≤ k, 1 ≤ j ≤ n) are iid random variables with

Zij ∼ N(0, 1). Then there exists a constant c > 0 (independent of k, ε) such
that for each x ∈ `n2 , we have

P
(

(1− ε)‖x‖2 ≤ ‖Tx‖2 ≤ (1 + ε)‖x‖2
)
≥ 1− 2e−ckε

2

.

Proof of Theorem 1. We choose C > 0 sufficiently large so that if k, n ∈ N, ε ∈
(0, 1) satisfy k ≥ Cε−2 log n, then 1− 2e−ckε

2 ≥ 1− 1
n2 . Clearly, C depends only

on c. Now let T : `n2 → `k2 be as in Lemma 2. Then for each x ∈ `n2 ,

P
(

(1− ε)‖x‖2 ≤ ‖Tx‖2 ≤ (1 + ε)‖x‖2
)
≥ 1− 1

n2
.

So given x1, . . . , xn ∈ `2, WLOG x1, . . . , xn ∈ `n2 and

P
(
∀i, j (1−ε)‖xi−xj‖2 ≤ ‖Txi−Txj‖2 ≤ (1+ε)‖xi−xj‖2

)
≥ 1−

(
n

2

)
1

n2
> 0.

So there exists a linear map T that has 1+ε
1−ε -distortion on {x1, . . . , xn}.

Recall that if Z ∼ N(0, 1) then Z has probability density function (pdf)
1√
2π
e−x

2/2. If Z1, . . . , Zn are iid∼ N(0, 1) and x ∈ `n2 with ‖x‖ =
√∑n

i=1 x
2
i = 1,

then
∑n
i=1 xiZi ∼ N(0, 1).

Lemma 5.3 (Tail Estimates). Let X be a random variable with EX = 0.

Assume that for some C > 0, u0 > 0 we have EeuX ≤ eCu2

for 0 ≤ u ≤ u0. Then
P(X > t) ≤ e−t2/4C for 0 ≤ t ≤ 2Cu0.

Proof. For any u ≥ 0,

P(X > t) = P(euX > eut) ≤ e−utEeuX (Markov’s inequality)

≤ e−ut+Cu
2

(provided 0 ≤ u ≤ u0)
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If 0 ≤ t ≤ 2Cu0, then we can take u = t/2C to obtain

P(X > t) ≤ e− t2

2C+ t2

4C = e−
t2

4C .

Lemma 5.4. Assume Z ∼ N(0, 1). Then there exists absolute constant C, u0 >

0 such that Eeu(Z2−1) ≤ eCu2

and Eeu(1−Z2) ≤ eCu2

for 0 ≤ u ≤ u0.

Proof. This is straightforward computation.

Eeu(1−Z2) =
1√
2π

∫
R
eu(1−x2)e−x

2/2 dx

= eu
1√
2π

∫
R
e−

1
2 (2u+1)x2

dx

=
eu√

2u+ 1

1√
2π

∫
R
e−y

2

dy (put y =
√

2u+ 1x)

=
eu√

2u+ 1

= eu−
1
2 log(2u+1)

= eu
2+O(u3)

using log(1 + x) = −
∑∞
n=1

(−x)n

n . A similar computation shows Eeu(Z2−1) ≤
eu

2+O(u3).

Proof of Lemma 2. Fix x ∈ `n2 . WLOG assume ‖x‖2 = 1. Then

(Tx)i =
1√
k

n∑
j=1

xjZij , 1 ≤ i ≤ k.

Let Zi =
∑n
j=1 xjZij . Then Z1, . . . , Zn are iid with Zi ∼ N(0, 1). Then

E‖Tx‖2 =
∑

E|(Tx)i|2 =
1

k

k∑
i=1

E(Z2
i ) = 1.

Let W = 1√
k

∑k
i=1(Z2

i − 1). Then EW = 0 and varW = 1. Fix C, u0 as given

by Lemma 4 and WLOG 2cu0 ≥ 1. Then

EeuW =

k∏
i=1

e
u√
k

(Z2
i−1)

(by independence)

≤
k∏
i=1

eCu
2/k (Lemma 4)

= eCu
2

(if 0 ≤ u ≤
√
ku0).
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Similarly E(e−uW ) =
∏k
i=1 e

u/sqrtk(1−Z2
i ) ≤ eCu

2

. So P(W > t) ≤ e−t
2/4C ,

P(W < −t) ≤ e−t2/4C for 0 ≤ t ≤ 2Cu0

√
k (note 2Cu0 ≥ 1). So

P
(

(1− ε)‖x‖2 ≤ ‖Tx‖2 ≤(1 + ε)‖x‖2
)

= P
(

(1− ε)2 ≤ ‖Tx‖22 ≤ (1 + ε)2
)

≥ P
(

1− ε ≤ 1

k

k∑
i=1

Z2
i ≤ 1 + ε

)
= P

(
1− ε ≤ 1√

k
W + 1 ≤ 1 + ε

)
= P(−ε

√
k ≤W ≤ ε

√
k)

≥ 1− 2e−ε
2k/4C .

Aim. Our aim is to prove that dimension reduction as in JL Lemma does not
work in `1.

Theorem 5.5. For all n ∈ N there exists a subset X of `1 of size |X| = N ≥ n
such that if X embeds into `k1 with distortion ≤ D, then k ≥ n

1
32D2 .

We introduce the diamond graphs Dn, n = 0, 1, 2, . . . : D0 consists of 2
vertices joined by an edge. Dn+1 is obtained from Dn by replacing every edge xy
in Dn with new vertices u, v and edges xv, vy, xu, uy. Note D0 = K2, D1 = C4.

x y

x y

u

v

Let En = E(Dn), Vn = V (Dn). Then |En| = 4n, |Vn| = 2 + 2(1 + 4 + · · ·+
4n−1) = 2

3 (4n + 2). Observe that |Vn| ≤ 4n for all n ≥ 1.
Let dn = dDn . For every n ≥ m ≥ 0,∀x, y ∈ Dm, dn(x, y) = 2n−mdm(x, y).
We define sets An for n ≥ 1 of “non-edges” as follows: For n ≥ 1, Dn consists

of copies of D1 = C4 of the form xyuv where xy ∈ En−1 and u, v ∈ Vn \ Vn−1.
Let An consist of all pairs {u, v}.

Let’s label the vertices as follows. D0 = `r for left and right, D1 = `brt where
b for bottom and t for top. Write Dn(`r) for Dn. Dn+1(`r) consists of 4 copies
of Dn: Dn(t`), Dn(tr), Dn(b`), Dn(br). If e, f are two of the edges t`, tr, b`, br,
then V (Dn(e)) ∩ V (Dn(f)) = e ∩ f .

Remark. dn(`, r) = 2n for all n ≥ 0, and dn(t, b) = 2n for all n ≥ 1. For every
x ∈ Dn, dn(`, x) + dn(x, r) = 2n.

Lemma 5.6. For all n ≥ 0, Dn embeds into `2
n

1 with distortion ≤ 2.

Proof. Let f0 : D0 → Hk ⊂ `k1 be such that f0(`), f0(r) are neighbours in Hk.
So f0 is isometric (e.g. k = 1 = 20, f0(`) = (0), f0(r) = (1)). Assume fn : Dn →
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Hk2n ⊂ `k2n has been defined. Then we define fn+1 : Dn+1 → Hk2n+1 ⊂ `k2n+1

as follows: let x ∈ Dn we let fn+1(x) = (fn(x), fn(x)). If xy ∈ En and u, v
are the corresponding new vertices in Dn+1, we let fn+1(u) = (fn(x), fn(y)),
fn+1(v) = (fn(y), fn(x)).

Observe that for x, y ∈ Dn, ‖fn+1(x)− fn+1(y)‖1 = 2‖fn(x)− fn(y)‖1. So
∀n ≥ m ≥ 0,∀x, y ∈ Dm, ‖fn(x)− fn(y)‖1 = 2n−m‖fm(x)− fm(y)‖1.

First show that ∀n ≥ 0,∀xy ∈ En, ‖fn(x)−fn(y)‖1 = dn(x, y) = 1. Proof by
induction on n: n = 0 (and n = 1) is clear. Now assume n ≥ 1. An edge in Dn

is of the form xu, where ∃xy ∈ En−1 and u, v are the corresponding new vertices
in Dn. Now ‖fn(x) − fn(y)‖= ‖(fn−1(x), fn−1(x)) − (fn−1(x), fn−1(y))‖1 =
‖fn−1(x) − fn−1(y)‖1= 1 by induction hypothesis. It follows that fn is 1-
Lipschitz for all n ≥ 0. To see this, given x, y ∈ Dn, there exists a path
x = x0, x1, x2, . . . , xm = y in Dn with m = dn(x, y). Then ‖fn(x)− fn(y)‖1 ≤∑m
i=1‖fn(xi)− fn(xi−1)‖1 = m = dn(x, y).

Claim. ∀n ≥ 0,∀x, y ∈ Dn, ‖fn(x)− fn(y)‖1 ≥ 1
2dn(x, y).

Note that ∀n ≥ m ≥ 0, if xy ∈ Em, then ‖fn(x)− fn(y)‖1 = 2n−m‖fm(x)−
fm(y)‖1 = 2n−m = 2n−mdm(x, y) = dn(x, y). In fact, it is enough if ‖fm(x)−
fm(y)‖1 = dm(x, y).

This claim is proved by induction on n. Note that f0, f1 are isometric.
Assume n ≥ 2 and the claim holds for n − 1. Fix x, y ∈ Dn. Recall that Dn

consists of 4 copies of Dn−1. We have 3 cases.

Case 1: x, y in the same copy, WLOG x, y ∈ Dn−1(t`). Define g0 : D0(t`) →
H2k, g0(u) = f1(u). Then define gm : Dm → H2mk inductively starting
with g0 in the same way as fm is defined from f0. Then by easy induc-
tion, gn−1 = fn|Dn−1(t`). By induction hypothesis, ‖fn(x) − fn(y)‖1 =

‖gn−1(x) − gn−1(y)‖1 ≥ 1
2dDn−1(t`)(x, y) ≥ 1

2dDn(x, y). [In fact, the last
inequality is an equality, because the four copies of Dn−1 only meet at
`, b, r or t.]

Case 2: x, y are in neighbouring copies, WLOG x ∈ Dn−1(t`), y ∈ Dn−1(tr).
Now ‖fn(x) − fn(y)‖ ≥ ‖fn(`) − fn(r)‖1 − ‖fn(`) − fn(x)‖1 − ‖fn(y) −
fn(r)‖1 = 2n−1‖f1(`) − f1(r)‖ − dn(x, `) − dn(y, r) = 2n − dn(x, `) −
dn(y, r) =

(
2n−1 − dDn−1(t`)(x, `)

)
+
(
2n−1 − dDn−1(tr)(y, r)

)
= dn(x, t) +

dn(t, y) = dn(x, y).

Case 3: x, y are in opposite copies, WLOG x ∈ Dn−1(t`), y ∈ Dn−1(br). Then

dn(x, y) =
(
dn(x, `) + 2n−1 + dn(b, y)

)
∧
(
dn(x, t) + 2n−1 + dn(r, y)

)
≤ 2n,

since dn(x, `)+dn(b, y)+dn(x, t)+dn(r, y) = 2n. Assume WLOG dn(x, t)+
dn(y, b) ≤ dn(x, `) + dn(y, r). So dn(x, t) + dn(y, b) ≤ 2n−1. Then by the
triangle inequality and the fact that fn is 1-Lipschitz,

‖fn(x)− fn(y)‖1 ≥ ‖fn(t)− fn(b)‖1 − ‖fn(x)− fn(t)‖1 − ‖fn(y)− fn(b)‖1

≥ 2n − dn(x, t)− dn(y, b) ≥ 2n−1 ≥ 1

2
dn(x, y).
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Recall that for all x1, x2, x3, x4 ∈ `2 we have

‖x1 − x3‖22 + ‖x2 − x4‖22 ≤ ‖x1 − x2‖22 + ‖x2 − x3‖22
+ ‖x3 − x4‖22 + ‖x4 − x1‖22,

also called the Short Diagonal Lemma.

Lemma 5.7 (Short diagonal Lemma in Lp). Let 1 < p < 2. Then ∀x1, x2, x3, x4 ∈
Lp, we have

‖x1 − x3‖2p + (p− 1)‖x2 − x4‖2p ≤ ‖x1 − x2‖2p + ‖x2 − x3‖2p
+ ‖x3 − x4‖2p + ‖x4 − x1‖2p,

Proof. WLOG x1, x2, x3, x4 ∈ `kp for some k (k = 6 will do by Theorem 2.7).
Lemma 7 can be deduced from the following:

‖x‖2p + (p− 1)‖y‖2p ≤
‖x+ y‖2p + ‖x− y‖2p

2
∀x, y ∈ `kp. (∗)

To see this, consider two parallelograms:

x1 x2

x2 + x4 − x1x4

x3 x2

x2 + x4 − x3x4

For the first parallelogram, set x = x2 + x4 − 2x1, y = x4 − x2. For the
second parallelogram, set x = x2 + x4 − 2x3, y = x4 − x2. Apply (∗) for both
parallelograms:

‖x2 + x4 − 2x1‖2p + (p− 1)‖x2 − x4‖2p ≤ 2‖x4 − x1‖2p + 2‖x2 − x1‖2p,
‖x2 + x4 − 2x3‖2p + (p− 1)‖x2 − x4‖2p ≤ 2‖x4 − x3‖2p + 2‖x2 − x3‖2p.

We take average of these 2 inequalities and use convexity of z 7→ ‖z‖2p to get

‖x1 − x3‖2p + (p− 1)‖x2 − x4‖2p

=

∥∥∥∥x2 + x4 − 2x3

2
+

2x1 − x2 − x4

2

∥∥∥∥2

p

+ (p− 1)‖x2 − x4‖2p

≤
‖x2 + x4 − 2x3‖2p + ‖x2 + x4 − 2x1‖2p

2
+ (p− 1)‖x2 − x4‖2p

≤ ‖x1 − x2‖2p + ‖x2 − x3‖2p
+ ‖x3 − x4‖2p + ‖x4 − x1‖2p,

as required.

To prove (∗), use the fact that for a, b ≥ 0,
(
aq+bq

2

)1/q
is increasing in

q ∈ [1,∞). So (∗) follows from

‖x‖2p + (p− 1)‖y‖2p ≤
(‖x+ y‖pp + ‖x− y‖pp

2

)2/p

.
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Define

L(t) = ‖x‖2p + (p− 1)‖y‖2pt2,

R(t) =

(‖x+ ty‖pp + ‖x− ty‖pp
2

)2/p

= H(t)2/p,

H(t) =
1

2

k∑
i=1

(|xi + tyi|p + |xi − tyi|p) , t ∈ R.

We need that L(1) ≤ R(1). We have L(0) = R(0) = ‖x‖2p. From now we assume
x 6= 0, y 6= 0. Next we differentiate.

L′(t) = 2(p− 1)‖y‖2pt

R′(t) =
2

p
H(t)

2
p−1H ′(t)

H ′(t) =
p

2

k∑
i=1

(
|xi + tyi|p−1 sgn(xi + tyi)yi − |xi − tyi|p−1 sgn(xi − tyi)yi

)
.

Note that L′(0) = R′(0) = 0. Differentiate again:

L′′(t) = 2(p− 1)‖y‖2p.

Let I = [k] \ {i ∈ [k] : xi = yi = 0}, where [k] = {1, . . . , k}. Note I 6= ∅ as
x, y 6= 0. For i ∈ I, there is ≤ 1 value of t such that xi + tyi = 0. So there exists
dissection 0 = t0 < t1 < · · · < tm = 1 of [0, 1] such that xi + tyi 6= 0,∀i ∈ I, ∀t ∈⋃m
j=1(tj−1, tj). For such t, we have

R′′(t) =
2

p

(
2

p
− 1

)
H(t)

2
p−2(H ′(t))2 +

2

p
H(t)

2
p−1H ′′(t)

≥ 2

p
H(t)

2
p−1H ′′(t)

=
2

p
H(t)

2
p−1 p

2
(p− 1)

∑
i∈I

(
|xi + tyi|p−2y2

i + |xi − tyi|p−2y2
i

)
.

We now use reverse Hölder’s inequality : suppose 0 < r < 1 and 1
r + 1

s = 1, so
s = r

r−1 < 0. Given ai, bi ∈ R, bi 6= 0, we have(∑
i∈I
|ai|r

)1/r

=

(∑
i∈I
|aibi|r|bi|−r

)1/r (
take p =

1

r
, q =

1

1− r

)

≤

(∑
i∈I
|aibi|

)(∑
i∈I
|bi|s

)−1/s

,

so (∑
i∈I
|ai|r

)1/r (∑
i∈I
|bi|s

)1/s

≤
∑
i∈I
|aibi|.
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Apply this with bi = |xi ± tyi|p−2, ai = y2
i , r = p

2 , s = p
p−2 , we have

R′′(t) ≥ H(t)
2
p−1(p− 1)

(∑
i∈I
|yi|p

)2/p
(∑

i∈I
|xi + tyi|p

) p−2
p

+

(∑
i∈I
|xi − tyi|p

) p−2
p


≥ H(t)

2
p−1(p− 1)‖y‖2p · 2

(
‖x+ ty‖p−2

p + ‖x− ty‖p−2
p

2

)

≥ H(t)
2
p−1(p− 1)2‖y‖2p

(‖x+ ty‖pp + ‖x− ty‖pp
2

) p−2
p

(r 7→ r
p−2
p convex)

= 2(p− 1)‖y‖2p = L′′(t).

So for each 1 ≤ j ≤ m, (R− L)′′ ≥ 0 on (tj−1, tj), so (R− L)′ is increasing on
[tj−1, tj ]. So (R− L)′ is increasing on [0, 1] and hence (R− L)′ ≥ 0 on [0, 1]. So
R− L is increasing on [0, 1] and hence R(1)− L(1) ≥ 0.

Corollary 5.8. For 1 < p < 2, n ∈ N, cp(D2) ≥
√

1 + (p− 1)n.

Proof. Dn consists of copies of D1 = xuyv, where xy ∈ En−1, uv ∈ Vn \ Vn−1.
Apply Lemma 7 for a function f : Dn → Lp:

‖f(x)− f(u)‖2p + ‖f(u)−f(y)‖2p + ‖f(y)− f(v)‖2p + ‖f(v)− f(x)‖2p
≥ ‖f(x)− f(y)‖2p + (p− 1)‖f(u)− f(v)‖2p.

Sum over all copies of D1 in Dn:∑
xy∈En

‖f(x)− f(y)‖2p ≥
∑

xy∈En−1

‖f(x)− f(y)‖2p + (p− 1)
∑

xy∈An

‖f(x)− f(y)‖2p

≥ . . .

≥ ‖f(`)− f(r)‖2p + (p− 1)
∑

xy∈A1∪···∪An

‖f(x)− f(y)‖2p.

We bound cp(Dn) from below using the corresponding Poincaré ratio. For xy ∈
Ak, dn(x, y) = 2n−kdk(x, y) = 2n−k+1 and |Ak| = 4k−1. So dn(`, r)2 +

(p− 1)
∑n
k=1 4k−14n−k+1 = 4n(1 + (p− 1)n). So cp(Dn) ≥

(
4n(1+(p−1)n)

4n

)1/2

=√
1 + (p− 1)n.

Lemma 5.9. Given k ≥ 2, the identity ip : `k1 → `kp where p = 1 + 1
log2 k

has

distortion at most 2.

Proof. For x = (xi)
k
i=1 ∈ Rk, by Hölder, ‖x‖p ≤ ‖x‖1 =

∑k
i=1 |xi| ≤ k1−1/p‖x‖p.

Now k1−1/p = k
1/ log2 k

1+1/ log2 k = k
1

log2 k+1 = 2
log2 k

log2 k+1 ≤ 2.

Proof of Theorem 5. Let n ∈ N. By Theorem 6, there exists an embedding
f : Dn → `1 of distortion at most 2. Set X = f(Dn). So |X| = |Dn| ≤ 4n.
Assume g : X → `k1 has distortion at most D. Then ipgf : X → `kp, p = 1 + 1

log2 k

has distortion ≤ 4D (Lemma 9). By Corollary 8, 4D ≥
√

1 + (p− 1)n, and

16D2 ≥ n
log2 k

≥ log2 |X|
2 log2 k

. So log2 k ≥
log2 |X|
32D2 and hence k ≥ |X|

1
32D2 .
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6 Ribe Programme

Definition. Given Banach spaces X,Y , we say X is finitely representable in Y
if ∀E ⊂ X,dimE <∞, ∀λ > 1, ∃F ⊂ Y such that d(E,F ) < λ, i.e. there exists
a linear bijection T : E → F such that ‖T‖‖T−1‖ < λ.

Example. (i) Every X is finitely representable in c0.

(ii) `2 is finitely representable in every ∞-dimensional X [Dvoretzky].

Definition. X is crudely finitely representable in Y if ∃λ > 1, ∀E ⊂ X, dimE <
∞, ∃F ⊂ Y , s.t. d(E,F ) < λ.

Definition. A local property (or local isomorphic property) of a Banach space
is one that depends only on its finite-dimensional subspaces.

Definition. For 1 ≤ p ≤ 2, we say X has type p if ∃C > 0, ∀n ∈ N,

∀x1, . . . , xn ∈ X, E‖
∑n
i=1 εixi‖ ≤ C (

∑n
i=1‖xi‖p)

1/p
. Here, ε1, . . . , εn are {±1}-

valued independent Rademacher( 1
2 ) random variables.

For 2 ≤ q ≤ ∞, we say X has cotype q if ∃C > 0, ∀n ∈ N, ∀x1, . . . , xn ∈ X,

E‖
∑n
i=1 εixi‖ ≥

1
C (
∑n
i=1‖xi‖q)

1/q
. For q =∞, RHS = 1

C max1≤i≤n‖xi‖.

Example. Every X has type 1, cotype ∞; `2 has type 2 and cotype 2 with
C = 1.

If X is crudely finitely representable in Y and Y has some local property,
then so does X.

Theorem 6.1 (Ribe’s Theorem). If Banach spaces X,Y are uniformly homeo-
morphic then X is crudely finitely representable in Y and vice versa.

Proof. Omitted.

Remark. Local properties depend only on the metric structure of the Banach
space, not the linear structure.

Aim. Aim for the Ribe programme:

(i) Find metric characterisations of local properties of Banach spaces.

(ii) Find metric analogues of local properties of Banach spaces.

Our aim is to find a metric characterisation of super-reflexivity.

Definition. Recall that given a Banach space X, there is an isometric isomor-

phism X X∗∗ x 7−→ x̂, where x̂(f) = f(x). Easy to check x̂ ∈ X∗∗ and
‖x̂‖ ≤ ‖x‖. By Hahn-Banach, we have ‖x̂‖ = ‖x‖. It’s then clear that x 7−→ x̂
is linear. So the image of X in X∗∗ is a closed subspace of X∗∗, which we will
always identify with X. Say X is reflexive if X = X∗∗.

Warning. There exists Banach space J such that J is isometrically isomorphic
to J∗∗ but J∗∗/J has dimension 1.

Definition. We say X is super-reflexive if every Y finitely representable in X
is reflexive. So super-reflexive =⇒ reflexive.
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Example. Let X =
(⊕

n∈N `
n
1

)
`2

= {(xn) : xn ∈ `n1 ∀n,
∑
‖xn‖2 < ∞}. X is

reflexive, but `1 is finitely representable in X (see example sheet), so X is not
super-reflexive.

We recall the following for a Banach space X:

(i) The weak topology on X is defined as follows: U ⊂ X is w-open if ∀x ∈ U ,
∃n ∈ N, ∃f1, . . . , fn ∈ X∗, ∃ε > 0 such that {y : |fi(y − x)| < ε, ∀i} ⊂ U .
Note |fi(y−x)| < ε can be written as fi(x)− ε < fi(y) < fi(x) + ε. So this
is a cylindrical set with finite codimension. This is the weakest topology
on X for which every f ∈ X∗ is continuous.

(ii) A convex subset C of X is ‖·‖-closed ⇐⇒ w-closed.

Proof. (⇐) is clear. (⇒) if x /∈ C, then by Hahn-Banach separation
({x} compact convex, C closed convex), there exists f ∈ X∗ such that
supC f < f(x). So {y : f(y) > supC f} is a weak neighbourhood of x
disjoint from C.

(iii) The w∗-topology on X∗ is defined as follows: U ⊂ X∗ is w∗-open ⇐⇒
∀f ∈ U, ∃n ∈ N, x1, . . . , xn ∈ X, ε > 0 such that {g ∈ X∗ : |(g− f)(xi)| <
ε, ∀i} ⊂ U . This is the weakest topology on X∗ for which every x ∈ X ⊂
X∗∗ is continuous. So w∗-topology ⊂ w-topology on X∗.

(iv) Banach-Alaoglu Theorem: BX∗ = {f ∈ X∗ : ‖f‖ ≤ 1} is w∗-compact.

Proof. Define

(BX∗ , w
∗)

∏
x∈X
{λ ∈ R : |λ| ≤ ‖x‖}ϕ

,

with ϕ(f) = (f(x))x∈X where the codomain is equipped with the product
topology, which is compact by Tychonov. It’s clear that ϕ is a homeo-
morphism of BX∗ onto ϕ(BX∗). Then ϕ(BX∗) =

⋂
x,y∈X,a,b∈R{(λx)x∈X :

λax+by − aλx − bλy = 0}, which is closed, hence compact.

(v) Goldstine’s Theorem: BX
w∗

= BX∗∗ in X∗∗.

(vi) X is reflexive ⇐⇒ (BX , w) is compact.

Proof. (⇒): We have X = X∗∗, so (X,w) = (X∗∗, w∗) so (BX , w) =
(BX∗∗, w

∗) which is compact by Banach-Alaoglu.

(⇐): The restriction of the w∗-topology of X∗∗ to X is the w-topology. So

BX is w∗-compact in X∗∗. So BX is w∗-closed and hence BX∗∗ = BX
w∗

=
BX and hence X∗∗ = X.

Lemma 6.2 (Local reflexivity). Let X be a Banach space, E ⊂ X∗ with
dimE < ∞ and let ϕ ∈ X∗∗ and let M > ‖ϕ‖. Then ∃x ∈ X such that
‖x‖ < M and x̂|E = ϕ|E.
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Remark. We can now prove Goldstine: BX
w∗

= BX∗∗ . Since BX ⊂ BX∗∗

and BX∗∗ is w∗-closed, it follows that BX
w∗ ⊂ BX∗∗ . Fix ψ ∈ BX∗∗ and a

w∗-neighbourhood U of ψ. Then ∃n ∈ N, f1, . . . , fn ∈ X∗,∃ε > 0 such that
{χ ∈ X∗∗ : |(χ− ψ)(fi)| < ε, ∀i} ⊂ U . Fix δ > 0 to be determined. By Lemma
2, ∃x ∈ X, ‖x‖ < 1 + δ, and fi(x) = ψ(fi) for all i. If ‖x‖ ≤ 1, then x ∈ BX ∩U ,
so done. Assume ∃x‖ > 1. Then∣∣∣∣ x̂‖x‖ (fi)− ψ(fi)

∣∣∣∣ =

∣∣∣∣fi(x)

‖x‖
− fi(x)

∣∣∣∣ =
|fi(x)|
‖x‖

|1− ‖x‖| ≤ δ‖fi‖, ∀i.

We can choose δ > 0 such that δ‖fi‖ < ε for all i, and then x
‖x‖ ∈ BX ∩ U .

Proof of Lemma 2. Fix a basis f1, . . . , fn of E. Define T : X −→ Rn by Tx =
(fi(x))ni=1 and let C = {Tx : ‖x‖ < M}. We need (ϕ(fi))

n
i=1 ∈ C. Then we will

be done. T is a bounded linear map and C is convex. We show that T is onto:
if not, then there exists a = (a1, . . . , an) ∈ Rn \ {0} such that

∑n
i=1 aifi(x) = 0

for all x, i.e.,
∑n
i=1 aifi = 0, but this is a contradiction. By the Open Mapping

Theorem, C is an open set. Let’s assume that (ϕ(fi))
n
i=1 /∈ C. By Hahn-Banach

separation, ∃a = (a1, . . . , an) 6= 0 such that
∑n
i=1 aifi(x) <

∑n
i=1 aiϕ(fi) for

all x ∈ X, ‖x‖ < M . Hence ‖
∑n
i=1 aifi‖M ≤ ϕ(

∑n
i=1 aifi) ≤ ‖ϕ‖‖

∑n
i=1 aifi‖.

Since
∑n
i=1 aifi 6= 0, we get M ≤ ‖ϕ‖, a contradiction.

Theorem 6.3. Let X be a Banach space. Then the following are equivalent:

(i) X is non-reflexive;

(ii) ∀θ ∈ (0, 1), ∃(xi)∞i=1 in BX , (fi)
∞
i=1 in BX∗ , such that

fi(xj) =

{
θ if i ≤ j
0 if i > j;

(iii) ∃θ ∈ (0, 1), the above holds;

(iv) ∀θ ∈ (0, 1), ∃(xi) in BX such that ∀n ∈ N,

d(conv{x1, . . . , xn}, conv{xn+1, xn+2, . . . }) ≥ θ.

(v) ∃θ ∈ (0, 1), such that the above holds.

Proof. (i) =⇒ (ii): Since X is a proper closed subspace of X∗∗, ∃T ∈ X∗∗∗ such
that ‖T‖ = 1, T |X = 0 (by Hahn-Banach). Fix θ ∈ (0, 1) and choose ϕ ∈ X∗∗,
‖ϕ‖ < 1, T (ϕ) > θ. Let λ = T (ϕ). Then θ < λ = T (ϕ) ≤ ‖T‖‖ϕ‖ = ‖ϕ‖ < 1,
i.e. θ < λ < 1.

Since ‖ϕ‖ > θ, there exists f1 ∈ BX∗ such that ϕ(f1) = θ. Then θ = ϕ(f1) ≤
‖ϕ‖‖f1‖ < ‖f1‖, and hence ∃x1 ∈ BX such that f1(x1) = θ.

Assume now that for some n ≥ 1 we have found sequences (xi)
n
i=1 in BX

and (fi)
n
i=1 in BX∗ such that

fi(xj) =

{
θ if 1 ≤ i ≤ j ≤ n
0 if 1 ≤ j < i ≤ n,
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and ϕ(fi) = θ for 1 ≤ i ≤ n. Since T (xi) = 0 for 1 ≤ i ≤ n and T (ϕ) = λ
and ‖T‖ = 1 < λ

θ , by Lemma 2, ∃g ∈ X∗ such that ‖g‖ < λ
θ and g(xi) = 0

for 1 ≤ i ≤ n and ϕ(g) = λ. Then fn+1 = θ
λg ∈ BX∗ and fn+1(xi) = 0 for

1 ≤ i ≤ n and ϕ(fn+1) = θ. Since ϕ(fi) = θ for 1 ≤ i ≤ n + 1 and ‖ϕ‖ < 1,
so by Lemma 2, ∃xn+1 ∈ BX such that fi(xn+1) = θ for 1 ≤ i ≤ n + 1. Now
continue inductively.

(ii) =⇒ (iii) and (iv) =⇒ (v) are clear.
We next show (ii) =⇒ (iv) and (iii) =⇒ (v). Fix θ ∈ (0, 1). Assume ∃(xi) in

BX , (fi) in BX∗ such that

fi(xj) =

{
θ if i ≤ j
0 if i > j.

Given n ∈ N and finite convex combinations
∑n
i=1 tixi and

∑∞
i=n+1 tixi, we have∥∥∥∥∥

∞∑
i=n+1

tixi −
n∑
i=1

tixi

∥∥∥∥∥ ≥
∣∣∣∣∣fn+1

( ∞∑
i=n+1

tixi −
n∑
i=1

tixi

)∣∣∣∣∣ =

∞∑
i=n+1

θti = θ.

Thus
d(conv{x1, . . . , xn}, conv{xn+1, xn+2, . . . }) ≥ θ.

Finally, we show (v) =⇒ (i). Assume ∃θ ∈ (0, 1) and (xi) in BX such that (v)
holds. Assume for a contradiction that X is reflexive.

For n ∈ N, let Cn = conv{xn+1, xn+2, . . . }. Cn (‖·‖-closure) is a ‖·‖-closed,
convex subset of BX . Hence Cn is a w-closed subset of BX . Also C1 ⊃ C2 ⊃
C3 ⊃ . . . and Cn 6= ∅ for all n. Since BX is w-compact, we have

⋂∞
n=1 Cn 6= ∅,

say it contains x. Since x ∈ C1, there exists y ∈ C1 such that ‖x − y‖ < θ
3 .

Choose n such that y ∈ conv{x1, x2, . . . xn}. Since x ∈ Cn, there exists z ∈ Cn
such that ‖x− z‖ < θ

3 . Then

θ ≤ d(conv{x1, . . . , xn}, conv{xn+1, xn+2, . . . }) ≤ ‖y − z‖ ≤
2θ

3
,

a contradiction.

Ultrafilters

Fix a set I 6= ∅. A filter on I is a family F ⊂ P(I) such that

(i) I ∈ F , ∅ /∈ F ;

(ii) A ⊂ B ⊂ I, A ∈ F =⇒ B ∈ F ;

(iii) A,B ∈ F =⇒ A ∩B ∈ F .

Remark. One can think of F as “big sets”, or “full-measure”.

Example. (i) For i ∈ I, Ui = {A ⊂ I : i ∈ A} is a filter – the principal filter
at i.

(ii) If |I| =∞, then {A ⊂ I : |I \A| <∞} is a filter – the cofinite filter on I.
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Definition. If X is a topological space, f : I → X is a function, F is a filter
on I, x ∈ X, then we write x = limF f if for all neighbourhoods U of x in X,
{i ∈ I : f(i) ∈ U} ∈ F .

Example. (i) If I = N, F = cofinite filter on N, then this is just the usual
notion of convergence of a sequence.

(ii) If X is Hausdorff and x = limF f, y = limF f , then x = y.

(iii) If F = Ui for some i ∈ I, then f(i) = limF f holds for all f : I → X.

Definition. Let I 6= ∅ be a set. An ultrafilter on I is a maximal filter on I with
respect to inclusion: it’s a filter U such that if F is a filter and U ⊂ F then
U = F .

Example. Any principal filter Ui = {A ⊂ I : i ∈ A} is an ultrafilter. If I is
finite, then these are the only ones.

In general, any filter is contained in an ultrafilter (use Zorn’s lemma).

Definition. A free ultrafilter is an ultrafilter that is not a principal ultrafilter.

Example. Any ultrafilter containing the cofinite filter is a free ultrafilter (|I| =
∞).

Lemma 6.4. Let U be an ultrafilter. If A ∪B ∈ U then A ∈ U or B ∈ U .

Proof. Assume otherwise, that ∃C,D ∈ U such that A ∩ C = B ∩D = ∅. Then
(A ∪B) ∩ (C ∩D) = ∅, a contradiction, as A ∪B,C ∩D ∈ U .

WLOG A ∩ C 6= ∅ for all C ∈ U . Then

{D ⊂ I : ∃C ∈ U , D ⊃ A ∩ C}

is a filter on I and it contains U , so equals U . So A ∈ U .

Remark. (i) Every free ultrafilter contains the cofinite filter. [For any finite
set A ⊂ I, consider A ∪Ac in the lemma above.]

(ii) For an ultrafilter U , define µ : P(I)→ {0, 1} by µ(A) = 1A∈U . Then µ is
a finitely additive measure.

Lemma 6.5. Let U be an ultrafilter and K be a compact topological space.
Then for every function f : I → K there exists x ∈ K such that x = limU f
(might not be unique, but if K is Hausdorff then it is). In particular, for every
bounded function f : I → R there exists a unique x ∈ R such that x = limU f .

Proof. If not, then ∀x ∈ K, ∃ open neighbourhood Vx of x such that Ax = {i ∈
I : f(i) ∈ Vx} /∈ U . Since K is compact, there exists a finite F ⊂ K such that⋃
x∈F Vx = K. Then

⋃
x∈F Ax = I ∈ U and by Lemma 4, ∃x ∈ F such that

Ax ∈ U , a contradiction.

Remark. Given bounded functions f, g : I → R we have

lim
U

(f + g) = lim
U
f + lim

U
g,

lim
U

(fg) =
(

lim
U
f
)(

lim
U
g
)
,

and if f(i) ≤ g(i) for all i ∈ I, then

lim
U
f ≤ lim

U
g.
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Ultraproduct and Ultrapowers

Definition. Fix a non-empty set I. We are given Banach spaces Xi, i ∈ I. We
fix an ultrafilter U on I. We let(⊕

i∈I
Xi

)
∞

=

{
(xi)i∈I : xi ∈ Xi ∀i ∈ I, sup

i∈I
‖xi‖ <∞

}
.

This is a Banach space with norm ‖(xi)‖∞ = supi∈I‖xi‖. Define

‖(xi)‖U = lim
U
‖xi‖.

This defines a seminorm on
(⊕

i∈I Xi

)
∞. It follows that

NU = {(xi) : ‖(xi)‖U = 0}

is a subspace of
(⊕

i∈I Xi

)
∞, and the quotient

(⊕
i∈I Xi

)
∞ /NU becomes a

normed space with norm ‖((xi)i∈I)U‖ = ‖(xi)i∈I‖U where for x ∈
(⊕

i∈I Xi

)
∞,

xU = x +NU . It is easy to check that this is a complete norm. This Banach
space is denoted by

(∏
i∈I Xi

)
U — called an ultraproduct of (Xi)i∈I .

If Xi = X for all i ∈ I for some Banach space X, then the ultraproduct(∏
i∈I Xi

)
U is denoted by XU — called an ultrapower of X.

Proposition 6.6. Any ultrapower XU of a Banach space X is finitely repre-
sentable in X.

Proof. Let E be a finite-dimensional subspace ofXU . Choose a basis e1, e2, . . . , en
of E. For each 1 ≤ k ≤ n, fix (xk,i)i∈I , a bounded sequence in X, such that
ek = ((xk,i)i)U . So ∀(λk)nk=1 in Rn,

∑
λkek = ((

∑
λkxk,i)i)U .

Fix ε > 0. We seek an injective linear map T : E → X such that ‖T‖·‖T−1‖ <
1 + ε (here T−1 : T (E) → E). Choose δ ∈ (0, 1

3 ) such that 1+δ
1−3δ < 1 + ε. Let

S ⊂ Rn be a finite set such that S̃ = {
∑n
k=1 λkek : (λk)nk=1 ∈ S} is a δ-net of

SE .
Since ‖

∑n
k=1 λkek‖U = limU ‖

∑n
k=1 λkxk,i‖ = 1 for all (λk) ∈ S, we have{

i ∈ I : 1− δ <

∥∥∥∥∥
n∑
k=1

λkxk,i

∥∥∥∥∥ < 1 + δ

}
∈ U .

Since S is finite, these sets have intersection in U . In particular, ∃i0 ∈ I such
that

1− δ <

∥∥∥∥∥
n∑
k=1

λkxk,i0

∥∥∥∥∥ < 1 + δ ∀(λk) ∈ S.

Now define T : E → X, T (
∑n
k=1 µkek) =

∑n
k=1 µkxk,i0 , (µk) ∈ Rn. Given

x ∈ SE , ∃z ∈ S̃ such that ‖x− z‖ ≤ δ. So

‖Tx‖ ≤ ‖Tz‖+ ‖T (x− z)‖ ≤ (1 + δ) + ‖T‖δ.

Taking sup over x ∈ SE , ‖T‖ ≤ 1 + δ + δ ‖T‖, so ‖T‖ ≤ 1+δ
1−δ . It follows that

‖Tx‖ ≥ ‖Tz‖ − ‖T (x− z)‖ ≥ 1− δ − 1+δ
1−δ δ = 1−3δ

1−δ . Hence
∥∥T−1

∥∥ ≤ 1−δ
1−3δ and

‖T‖ ‖T−1‖ ≤ 1+δ
1−3δ < 1 + ε.
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Theorem 6.7. Let X be a Banach space. Then X is superreflexive ⇐⇒
whenever Y is crudely finitely representable in X, then Y is reflexive.

Proof. ( ⇐= ): clear from definition. ( =⇒ ): assume Y is non-reflexive and
crudely finitely representable in X. Fix θ ∈ (0, 1). By Theorem 3, ∃(yi)∞i=1 in
BY such that ∀n,

d(conv(y1, . . . , yn), conv(yn+1, yn+2, . . . )) ≥ θ.

There exists λ > 1 such that ∀ subspace E ⊂ Y , dimE <∞, ∃ linear T : E → X
such that

λ−1 ‖y‖ ≤ ‖Ty‖ ≤ ‖y‖ ∀y ∈ E.
For N ∈ N, ∃ linear map TN : span(y1, . . . , yN )→ X such that

λ−1 ‖y‖ ≤ ‖TNy‖ ≤ ‖y‖ ∀y ∈ span(y1, . . . , yN ).

Let xN,i = TN (yi) for 1 ≤ i ≤ N . Note that for 1 ≤ m < n ≤ N and for convex
combinations

∑m
i=1 tixN,i,

∑n
i=m+1 tixN,i, we have∥∥∥∥∥

m∑
i=1

tixN,i −
n∑

i=m+1

tixN,i

∥∥∥∥∥ ≥ 1

λ

∥∥∥∥∥
m∑
i=1

tiyi −
n∑

i=m+1

tiyi

∥∥∥∥∥ ≥ θ

λ
.

Note also that ‖xN,i‖ ≤ 1 for all 1 ≤ i ≤ N . WLOG replace θ/λ by θ. Now fix
a free ultrafilter U on N. Define

x̃N,i =

{
xN,i if i ≤ N
0 if i > N,

x̃i = ((x̃N,i)
∞
N=1)U .

Given 1 ≤ m < n and convex combinations z =
∑m
i=1 tix̃i and w =

∑n
i=m+1 tix̃i

in XU , we have ∀N ∈ N, N ≥ n,∥∥∥∥∥
m∑
i=1

tix̃N,i −
∑

i=m+1

tix̃N,i

∥∥∥∥∥ ≥ θ.
It follows that ‖z − w‖ ≥ θ. Then

d(conv{x̃1, . . . , x̃m}, conv{x̃m+1, . . . }) ≥ θ.

By Theorem 3, XU is non-reflexive. By Proposition 6, XU is finitely representable
in X, and hence X is not superreflexive.

Definition. A Banach space X is strictly convex if ∀x, y ∈ SX , x 6= y,
∥∥x+y

2

∥∥ <
1. Say X is uniformly convex if ∀ε ∈ (0, 2], ∃δ > 0, ∀x, y ∈ SX , ‖x− y‖ ≥
ε =⇒ 1−

∥∥x+y
2

∥∥ ≥ δ. The modulus of uniform convexity of X is the function
δX : [0, 2]→ R+ defined by

δX(ε) = inf{1−
∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ SX , ‖x− y‖ ≥ ε}.

Example. (i) `2 is uniformly convex: given x, y ∈ S`2 with ‖x− y‖ ≥ ε, we
have, by the parallelogram rule,

4 = 2 ‖x‖2 + 2 ‖y‖2 = ‖x+ y‖2 + ‖x− y‖2 ≥ ‖x+ y‖2 + ε2.

So 1−
∥∥x+y

2

∥∥ ≥ 1−
√

1− ε2

4 ≈
ε2

8 .
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(ii) Choose 1 < pn < 2, pn → 1. Let X =
(⊕∞

n=1 `
2
pn

)
`2
. Then X is strictly

convex, but not uniformly convex. However, X ∼ (
⊕∞

n=1 `
n
2 )
`2
∼= `2. So

uniform convexity is not an isomorphic property.

(iii) c0, `1, `∞ are not strictly convex.

Theorem 6.8 (Milman-Pettis). If X is uniformly convex, then X is reflexive.

Remark. Recall Goldstine’s Theorem: BX
w∗

= BX∗∗ . In fact, if dimX =∞,

then SX
w∗

= BX∗∗ .

Proof. Let ϕ ∈ BX∗∗ and U be a w∗-neighbourhood of ϕ. WLOG ∃n ∈ N,
f1, . . . , fn ∈ X∗, ε > 0 such that U = {ψ ∈ X∗∗ : |(ψ − ϕ)(fi)| < ε, ∀i}. Choose
x ∈ BX ∈ U by Goldstine. Fix z ∈

⋂n
i=1 ker fi, z 6= 0 (dimX = ∞). Then

x+ λz ∈ U ∀λ ∈ R, and ∃λ ∈ R such that ‖x+ λz‖ = 1.

Proof of Theorem 8. WLOG dimX =∞. Fix ϕ ∈ SX∗∗ . We show that ϕ ∈ X.
Then we’ll be done. Fix ε ∈ (0, 2) and let δ = δX(ε) > 0. Then ∀x, y ∈ SX
if ‖x+ y‖ ≥ 2 − δ, then 1 −

∥∥x+y
2

∥∥ ≤ δ
2 < δ, and hence ‖x− y‖ < ε. Choose

fε ∈ BX∗ such that ϕ(fε) > 1− δ
2 . Let Vε = {ψ ∈ X∗∗ : ψ(fε) ≥ 1− δ

2}. This
is a w∗-closed neighbourhood of ϕ. Hence Wε = Vε ∩ SX is non-empty and
‖·‖-closed subset of X. Also, given x, y ∈Wε, ‖x+ y‖ ≥ fε(x+ y) ≥ 2− δ, and
hence ‖x− y‖ < ε. Thus, diam(Wε) ≤ ε. Now for n ∈ N, let

An =

n⋂
k=1

W1/k = {ψ ∈ X∗∗ : ψ(f1/k) ≥ 1− δX(1/k)

2
for k = 1, . . . , n} ∩ SX .

So An is a non-empty, ‖·‖-closed subset of X of diameter at most diam(W1/n) ≤
1
n . Also, An ⊃ An+1 for all n, and X is complete, so by Cantor’s intersection
Theorem, ∩∞n=1An = {x} for some x ∈ SX .

We show that ϕ = x̂. If not, then ∃g ∈ X∗, η = ϕ(g)− g(x) > 0. Let

Bn = An ∩ {ψ : |ϕ(g)− ψ(g)| ≤ η

2
}

= {ψ : ψ(f1/k) ≥ 1− δX(1/k)

2
for k = 1, . . . , n, |ϕ(g)− ψ(g) ≤ η

2
}︸ ︷︷ ︸

w∗-closed neighbourhood of ϕ

∩SX ,

so Bn is nonempty, ‖·‖-closed and diam(Bn) ≤ diam(An) → 0. So ∩∞n=1Bn =
{x}, so |ϕ(g)− g(x)| ≤ η

2 , a contradiction.

Fact (Enflo). (X, ‖·‖) is superreflexive ⇐⇒ ∃ equivalent norm ‖·‖′ on X such
that (X, ‖·‖′) is uniformly convex. Recall norm equivalence means ∃a, b > 0 such
that

a‖x‖ ≤ ‖x‖′ ≤ b‖x‖.

Example. `2 ⊕2 `
2
1 ∼ `2 ⊕2 `

2
2
∼= `2, which is superreflexive but `2 ⊕2 `

2
1 is not

strictly convex.

Recall that the binary tree of depth n, Bn, has vertex set ∪nk=0{0, 1}k and
ε = (ε1, . . . , εk) ∈ {0, 1}k, k < n, is joined to (ε1, . . . , εk, i), i = 0, 1.
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Notation. Given ε = (ε1, . . . , εk), δ = (δ1, . . . , δ`), we write ε � δ if k ≤ ` and
εi = δi for 1 ≤ i ≤ k. We also let |ε| = k denote the length of ε.

Definition. We say a Banach space X has the finite tree property if ∃θ > 0,
∀n ∈ N, ∃{xε : ε ∈ Bn} ⊂ BX such that xε = 1

2 (xε0 + xε1) for all ε ∈ Bn−1,
‖xε − xεi‖ ≥ θ ∀ε ∈ Bn−1, i = 0, 1.

Theorem 6.9. For a Banach space, the following are equivalent:

(a) X is not superreflexive;

(b) X has the finite tree property;

(c) ∃θ > 0, ∀n ∈ N, ∃{x1, . . . , xn} ⊂ BX such that∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ ≥ θ
∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣ ∀a1, . . . , an ∈ R, 1 ≤ ` ≤ m ≤ n.

Remark. Let S = {(ai)∞i=1 ⊂ R :
∑∞
i=1 ai is convergent}. This becomes a

normed space with

‖(ai)‖ = sup

{∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣ : 1 ≤ ` ≤ m

}
.

This is called the summing norm. Note S ∼ c0, via the map

(ai)
∞
i=1 7−→

( ∞∑
i=n

ai

)∞
n=1

.

Definition. Given a convex set C in a Banach space Z, a point w ∈ C is
strongly exposed if ∃f ∈ Z∗ such that

(i) f(u) < f(w) ∀u ∈ C, u 6= w;

(ii) diam{u ∈ C : f(w)− ε < f(u)} → 0 as ε→ 0.

Theorem 6.10. Every non-empty, w-compact convex subset of a separable
Banach space has a strongly exposed point.

Proof. Omitted. Theorem is also true for non-separable spaces.
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Proof of Theorem 9. (a) =⇒ (b): There exists a non-reflexive Z finitely rep-
resentable in X. Fix θ ∈ (0, 1). By Theorem 3, ∃(zi) in BZ such that
d(conv{z1, . . . , zn}, conv{zn+1, . . . }) ≥ θ for all n ∈ N. For ε = (ε1, . . . , εn) ∈ Bn,
let k(ε) = 1 +

∑n
i=1 2n−iεi. This is an enumeration of the leaves. For δ ∈ Bn,

let Iδ = {k(ε) : δ � ε, |ε| = n}, set of nth generation descendants of δ. Let
zδ = 2|δ|−n

∑
k∈Iδ zk. Since |Iδ| = 2n−|δ|, we have zδ ∈ conv{zk : k ∈ Iδ} ⊂ BZ .

For δ ∈ Bn−1, Iδ = Iδ,0 ∪ Iδ,1 and Iδ,0 ∩ Iδ,1 = ∅, and moreover, ∀k ∈ Iδ,0,
∀` ∈ Iδ,1, k < `. It follows that zδ = 1

2 (zδ0 + zδ1), and for i = 0, 1, we have

‖zδ − zδ,i‖ = 1
2 ‖zδ0 − zδ1‖ ≥

1
2d(conv{zk : k ∈ Iδ0}, conv{zk : k ∈ Iδ1}) ≥ θ

2 .
So Z has the finite tree property, and hence so does X since Z is finitely
representable in X.

(b) =⇒ (a): ∃θ > 0, ∀n, ∃{xnε : ε ∈ Bn} ⊂ BX such that xnε = 1
2 (xnε0 + xnε1)

∀ε ∈ Bn−1 and ‖xnε − xnεi‖ ≥ θ ∀ε ∈ Bn−1, i = 0, 1. Let U be a free ultrafilter
and let B∞ be the ∞ binary tree with vertex set

⋃∞
k=0{0, 1}k and ε joined to εi

∀ε ∈ B∞, i = 0, 1. Let

x̃nε =

{
xnε if |ε| ≤ n
0 if n < |ε|.

and x̃ε = ((x̃nε )n)U .

It’s easy to see that x̃ε = 1
2 (x̃ε0 + x̃ε1) and ‖x̃ε − x̃εi‖ ≥ θ ∀ε ∈ B∞, i = 0, 1.

Let Z = span{x̃ε : ε ∈ B∞}. This is a separable subspace of XU . Assume for
contradiction that X is superreflexive. Then by Proposition 6, Z is reflexive.
Then BZ is w-compact. Let C = conv{x̃ε : ε ∈ B∞}. Then C is a ‖·‖-closed
convex subset of BZ , and hence w-compact. By Theorem 10, C has a strongly
exposed point w. So ∃f ∈ Z∗ such that f(u) < f(w) ∀u ∈ C, u 6= w and ∃η > 0
{u ∈ C : f(u) > f(w)− η} has diameter < θ

2 . Since {u ∈ C : f(u) ≤ f(w)− η}
is ‖·‖-closed and convex and ( C, it cannot contain x̃ε ∀ε. So ∃ε ∈ B∞ such
that f(x̃ε) > f(w) − η. Then 1

2 (f(x̃ε0) + f(x̃ε1)) = f(x̃ε), so ∃i ∈ {0, 1} such

that f(x̃εi) > f(w)− η. Thus ‖x̃ε − x̃εi‖ < θ
2 , a contradiction.

(a) =⇒ (c): Let Z be non-reflexive and finitely representable in X. By
Theorem 2, ∃θ ∈ (0, 1) and (zi) in BZ , (hi) in BZ∗ such that

hi(zj) =

{
θ i ≤ j
0 i > j.

Given scalars (ai)
n
i=1, |

∑n
i=` ai| =

∣∣ 1
θh` (

∑n
i=1 aizi)

∣∣ ≤ 1
θ ‖
∑n
i=1 aizi‖. If 1 ≤ ` ≤

m ≤ n, then ∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=`

ai

∣∣∣∣∣+

∣∣∣∣∣
n∑

i=m+1

ai

∣∣∣∣∣ ≤ 2

θ

∥∥∥∥∥
n∑
i=1

aizi

∥∥∥∥∥ .
Since Z is finitely representable in X, ∀λ > 2

θ , ∀n, ∃x1, . . . , xn ∈ BX such that∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣ ≤ λ
∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ ∀a1, . . . , an ∈ R, 1 ≤ ` ≤ m.

(c) =⇒ (a):∃θ > 0, ∀n ∈ N, ∃{xn1 , . . . , xnn} ⊂ BX such that∥∥∥∥∥
n∑
i=1

aix
n
i

∥∥∥∥∥ ≥ θ
∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣ ∀a1, . . . , an ∈ R, 1 ≤ ` ≤ m ≤ n.
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Given a free ultrafilter U on N, the usual process yields an infinite sequence
(x̃i)

∞
i=1 in BXU such that ∀n ∈ N, ∀a1, . . . , an ∈ R, ∀1 ≤ ` ≤ m ≤ n,∥∥∥∥∥

n∑
i=1

aix̃i

∥∥∥∥∥ ≥ θ
∣∣∣∣∣
m∑
i=`

ai

∣∣∣∣∣ .
It follows that ∀i ∈ N,

hi(x̃j) =

{
θ i ≤ j
0 i > j

extends to a well-defined linear functional on XU with ‖hi‖ ≤ 1 [also uses
Hahn-Banach]. By Theorem 3, XU is not reflexive. By Proposition 6, XU is
finitely representable in X, so X is not superreflexive.

Theorem 6.11 (Metric Characterization of Superreflexivity). Let X be a
Banach space. The following are equivalent:

(a) X not superreflexive;

(b) The sequence (Dn) of diamond graphs embeds uniformly bilipschitzly into
X.

Sketch proof. (non-examinable) (b) =⇒ (a): Have fn : Dn → X supn dist(fn) <
∞. WLOG ∃δ > 0, ∀n, ∀x, y ∈ Dn, δ2−ndn(x, y) ≤ ‖fn(x)− fn(y)‖ ≤
2−ndn(x, y). Let D0 = tb, D1 = tb`r, and Dn is a union of 4 copies of
Dn−1. Fix n, f = fn. Let x∅ = f(t) − f(b). Then ‖x∅‖ ≤ 2−ndn(t, b) =
1. Consider ‖[(f(t)− f(`))− (f(`)− f(b))]− [(f(t)− f(r))− (f(r)− f(b))]‖ =
‖2(f(r)− f(`))‖ ≥ 2δ2−ndn(`, r) = 2δ. WLOG ‖(f(t)− f(`))− (f(`)− f(b))‖ ≥
δ. Let x0 = 2(f(`) − f(b)), x1 = 2(f(t) − f(`)). Then x∅ = 1

2 (x0 + x1) and
‖x∅ − x0‖ = 1

2 ‖x1 − x0‖ ≥ δ. Continue inductively.
(a) =⇒ (b): ∃θ > 0, ∀n, ∃x1, . . . , x2n ∈ BX with lower summing norm

estimate. First embed fn : Dn → {0, 1}2
n ⊂ `2

n

1 . For D0, do t = 1, b = 0.
For D1, do t = 11, ` = 01, b = 00, r = 10. If xy ∈ En−1, fn−1(x), fn−1(y) ∈
{0, 1}2n−1

differ in one digit, say j. Consider yuxv in Dn. If ν ∈ {x, y, u, v},
(fn(ν))2i−1 = (fn(ν))2i = (fn−1(x))i. fn(ν)2j−1, fn(ν)2j will be 00, 11, 01, 10 for
ν = x, y, u, v (fn−1(x))j = 0.

Let gn : Dn → X given by

gn(x) =

2n∑
j=1

εjxj , (εj) = fn(x).

If x is in top left, y is in bottom right, thenfn(x) = (fn−1(x), 1, . . . , 1︸ ︷︷ ︸
2n−1

), fn(y) =

(fn−1(y), 0, . . . , 0︸ ︷︷ ︸
2n−1

).

Exam will be 4 questions, answer 3 in 3 hours. Mostly bookwork.
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