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1 Measure Theory

Carathéodory’s Construction

Definition 1.1. Let X be a set. An outer measure on X is a function p: 2% —
[0, +00] such that (i) pu(0) = 0, (ii) (subadditivity) p(B) < 3772, A; whenever
B C U(J?ilAj-

We 1l describe a general method for building outer measures on a metric

space (X,d). Fix F C 2% and a function (: F — [0,+00]. For A C X and
6 > 0, define

Cs(A) = {{S;}jes : A C UjesS;,J countable,diam S; < 4,Vj}

The diameter is diam S; = sup, g, d(z,y). Then for § > 0, define

= inf ZC i)jes €Cs

JjeJ

If 0 < 61 < 82 < o0, then ps, (A) < ps, (A). This means p(A) = limgyo ps(A) =
Supg~o ps(A) exists. [Exercise: both p5 and p are outer measures.]

Example 1.2. Lebesgue Outer Measure. Let F be all boxes in R". Let
B =T];_, I where I; = [a;, b;] are intervals and ((B) = [[;—, (b; — a;).
s-dimensional Hausdorff measure. In R", s > 0, take F = 28" and
C(A) = wy(diam A/2)°, where wy is a normalising constant. We pick wy so that
if, for example s = n, then 7—[” z", ie we need H"-measure of a ball of
radius 1 to be 7/2T'(n/2 +1)~!, where T'(q = ;7 t9  exp(—t) dt. You get the
same measure if you take F to be all closed sets or all open sets [exercise].

Definition 1.3. Let p be an outer measure on a set X. We say A C X is
u-measurable if

w(C) = pu(CNA)+ p(CN A% VO C X.

To remember whehther A or C is the test set, remember that we want to define
measurable sets A to have nice boundaries.

Remark 1.4. Note that A measurable iff A° measurable. From subadditivity,
we always have <. So we just need to check

w(C) > u(CNA)+ u(Cn A% vC C X.

Theorem 1.5. Let y be an outer measure on X and (4;)52; be y-measurable
sets. Then

(i) Ujil A; and ﬂj’;l A; are measurable;
(i) If (A;)52, are disjoint, then u(U;il Aj) = Zj’;l A;.

(iii) If Ay C Ay C ... is an increasing sequence of sets, then lim;_, p(A4;) =

U2 4))-
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(iv) If A1 D Az D ... is a decreasing sequence of sets with p(A;) < oo, then
lin, e 1(A) = U521 4))-

Proof. (i) We first show that measurability is closed under finite unions and
intersections. For any C' C X,

n(C)

w(C N A+ p(CnASD)
p(CN A+ p(CnN AN Ag) + u(C N Af N AS)
> p(CN (A1 U A)) + p(CN(A U Ag)°),

because A1 UAs C A1 U(AfNA3) and ASNAS = (A1 UAs)C. By induction,
measurability is closed under finite unions and intersections.

(ii) If (A;)$2, is disjoint, then set By = U;V:1 Aj. Then
(By+1) = p(By+1 N Any1) + By N AN4) = p(An11) + p(By).

By induction, M(U;—V:l Aj) = ZJ 1 1(A;). By subadditivity, Zjvzl u(A;) =
,u(Uj.V:1 Aj) < M(U;il Aj). Take N — oo to one inequality. Use subaddi-
tivity to obtain the other inequality.

(ili) If A; are increasing, then write their union as disjoint annuli:

UAj =p AlUU(Aj+1\Aj)
j=1

j=1

= p(A1) + D A1\ 4))
j=1
= g A

(iv) If A; are decreasing, then pu(A1) < u((N;2; Aj) + (A \ N2, 4;). So

Since p(A;1) < 0o, we can cancel it from both sides.

(v) We go back to showing (i) for countable unions and intersections. Take
C C X. If p(C) = oo then we automatically have u(C) > p(CNUTZ, Aj)+
,u(Cﬁ(U;’il A;)¢). So WLOG p(C) < oo. Consider the outer measure p|C
given by (u|C)(B) = u(C N B). Easy to see all A; are (u|C)-measurable.

Now u(C MU, Aj) = im0 (1 C) ULy Aj) and p(C0 (U A))°) =
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lmpy oo (it LC)((U;V:1 A;)°). The proof is completed by adding these lines
together and using the fact that the finite union is (u|C)-measurable.
O

Definition 1.6. An outer measure p on X is said to be regular if for every
C' C X there exists a py-measurable set A D C with u(A) = u(C).

Definition 1.7. An outer measure i on a topological space X is said to be
Borel if every Borel set is u-measurable; and is said to be Borel reqular if it is
Borel and for every C' C X there exists a Borel set A O C with p(4) = u(C).
Note being Borel regular is not the same as being Borel and regular.

Proposition 1.8. Let p be a regular outer measure on X. If A1 C A3 C ... C X,
then lim; o0 p(A;) = p(U52, A4;5).

Remark 1.9. The A; need not be p-measurable.

Proof. For each j, pick measurable A’ > A; with p(A%) = pu(A;). Then set
By = U]‘?‘;NA;. Notice Ay C By. And then notice u(An) < u(Bn) < u(Ay) =
(An). Therefore

j—o0 j—o0

7 U Ajl <p U B; | = lim p(B;) = lim u(A4;).
j=1 j=1

O

Definition 1.10. An outer measure p on R"” is said to be a Radon measure if
it is Borel regular and p(K) < oo for all compact K C R”™.

Example 1.11. Let B;(0) be the unit ball in R"** where k > 1.Then [exercise]
H"(B1(0)) = +00. So H™ is not a Radon measure on R"**. But a typical kind
of example will be the following type of thing: let P be some n-dimensional
subspace of R"**. Then H"|P is a Radon measure on R"**.

Lemma 1.12. Let p be a Borel regular measure on R and let A C R™ be a
p-measurable set with p(A) < co. Then v := u| A is a Radon measure.

Proof. For any C C R", v(C) = u(C N A) < p(A) < co. Now we need to check
v is Borel regular. Since p is Borel regular, there exists Borel B D A with
w(B) = p(A). We claim p|A = p|B. Given C C R™, (u|B)(C) = u(BNC) =
u(BNCNA)+pu(BNCNAY) < p(CNA)+u(BNA) = (u[A)(C)+pu(B)—p(A) =
(1| A)(C). And since A C B, we have (u|A)(C) < (u|B)(C).

Now we will prove p| B is Borel regular. Take C' C R™. We know there exists
Borel E D BN C with u(E) = u(BNC). So EU B¢ is Borel and contains C.
Now v(C) =pu(CNB) < u(ENB)=v(EUDB°) and v(FUB®) = u(ENB) <
p(E) = p(BNC) =v(C). O

Lemma 1.13. Let p be a Borel regular outer measure on R™. For any Borel set
B with u(B) < oo and € > 0, there exists closed set C' C B with u(B\ C) < e.

Proof. Let F = Fp be the collection of all y-measurable sets A with the property
that for any e > 0, there exists closed C' C A such that (u|B)(A\ C) < e. Let’s
check that F is closed under countable unions and intersections. Suppose
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(4;)52, C F. For each j, pick closed C; C A; with (,uLB)( i\ Cj) < e277.
CertalnlyC °,Cj is closed and (1| B )( A \N2,C5) < ( | B) (U5 (A5\

Cj))sz;?';(uLB)(Aj\cj) S €2” i~ e And

o0 o0

(ulB) U ) < B J(4;\ C) < Sl B)(A;\ ) <

j=1 j=1

Since p(B) < 0o, we know from Theorem 1.5 that

W) [ JaUe ) = Jim ( UA\UC

So pick m > 1 such that (u|B) (U;’il A\UL, C]—> < 2e.

Then let G = {A € F: A° € F}. You can check from the previous work
that G is a o-algebra. It’s clear that F contains closed sets. Every open set is
the countable union of closed sets, so F also contains open sets. This means G
contains open sets, and therefore Borel sets, including B itself. O

Lemma 1.14 (1.14). Let x4 be a Radon measure R™. For any Borel set B and
€ > 0, there exists open set U D B with u(U \ B) < e.

Proof. Let B;(0) be a ball of radius j centred at the origin. Since p is Radon,
we know that ,u( (0)\ B) is finite. By applying Lemma 1.13, there exists closed
C; C B;(0 )\Bw1thu( 5 (0)\ B\ C)) <¢€/27. Let U = UJ: (B;j(0)\ C}). Now
B= U;;(B N B;(0)) C U3, (B;(0) \ C;) [Remember that C; C B;(0) N B¢, so
BUB;(0)° C Cf, which implies BN B;(0) C B;(0)NC§ = B;(0)\ C;.] And now

oo

pU\B) = | JBO\C)\ U B 00 B 25

j=1
O

Theorem 1.15 (Inner and Outer Regularity). Let p be a Radon measure on
R™.

(i) For any A C R™,
w(A) = inf{u(U) : U open, U D A};
(ii) For p-measurable A C R™,

u(A) = sup{u(K) : K compact, K C A}.

Proof. For (i), the < direction is immediate and if u(A) = 400, equality must
hold. Since p is Borel regular, there exists Borel B D A with u(B) = u(A).
Then by Lemma 1.14, there exists open U D B with u(U \ B) <e. So u(U) <
w(B) + € = (A) + e. Now take infimum over all such U.

For (ii), to begin with, we assume p(A) < oo. In particular, p := pu| A is Radon
(by Lemma 1.12). By (i) there exists an open set U D A¢ with v(U \ A°) < e.



1 Measure Theory IIT Intro to GMT

Of course, U\ A°=UnNA=A\U¢ and U° is a closed set with U® C A. And
we have that v(A4) < v(U¢) +¢€. So u(A) =v(A) <v(U°) +e < u(U°) +e.
Now if u(A) = +oo, set D; := B;(0) \ B;—1(0), so that A is the disjoint
union U?’;l(A N D;). Since u(AN D;) < oo, apply previous work to get closed
C; € AN D; with p((AN D;)\ Cj) < €/29. So now limy 0 (s, Cj) =
pUj21 C5) = 2052 m(Cy) =2 352, (AN Dj) — €277) > p(A) —e. 0

Definition 1.16. Let i be an outer measure on R™. We say that f: R" — R
is yu-measurable if for every Borel set B C R¥, the set f~!(B) is u-measurable.

Theorem 1.17 (Lusin). Let x be a Radon measure on R", and let f: R® — R¥
be a p-measurable function. Then for any py-measurable A C R™ with finite
measure and any € > 0 there exists a compact K C A with u(A\ K) < ¢, and
flx continuous. [Remark: as € ] 0, the set K becomes wilder and wilder.]

Proof. For each i = 1,2,3, ..., write RF as a disjoint union U;il B;; with Bj;
Borel sets with diam B;; < 1/i. (e.g. chop the codomain up into half-open
cubes of width 1/i.) Then f~!(B;;) are disjoint and A;; = f~1(B;;) N A
forms a partition of A into py-measurable sets. Next, by inner regularity, let
K;; be compact sets with K;; C A;; with p(A4;;/K;j) < €277971 so that
(AN U2, Kij) < e27'71 Pick N = N(i) with p(A\ UN(Z Ki;) < e27%
The set K; = U;V:(i) is compact. Pick b;; € Byj;, and define f;: K; — RF by
fil®) = bijlyer,, j<n()- Set K =2, K;. Then by construction

sup |fi(z) — ()] < 7.

zeK

and p(A\ K) <e¢, and f is the uniform limit of the continuous functions f; on
K. a

There is also Egoroff’s Theorem:

Theorem 1.18 (Egoroff). Let p be an outer measure on R™ and let A C R”
be a p-measurable subset with 1(A) < co. Suppose fj: A — R* is a sequence
of p-measurable functions converging pointwise p-a.e. on A to the function
f: A — RF. Given any e > 0, there exists (u-measurable?) B C A with
(A \ B) < e such that f;|p converges uniformly to f|g. [Apart from some e,
pointwise is just uniform??)

Proof. Write
Ejm={xecA:3i>j|filx)— f(z)] >1/m}.

Notice the F; ,,, are decreasing sets in j, and on ﬂ]oil E; m, f; doesn’t converge
to f, so this set has zero measure by the assumption on pointwise convergence.
Pick J = J(m) so that E,, has measure e2~™. If x is not in |J,-_; Esm, then
V¥m > 1, such that Vi > J(m), |fi(x) — f(z)] < 1/m. O



2 Covering Theorems IIT Intro to GMT

2 Covering Theorems

This is a very GMT section. We will talk about Besicovitch Covering Theorem,
which is just a statement involving balls of R™ with no mention on measures.

Theorem 2.1 (Besicovitch Covering Theorem). Let n > 1. Then there exists
N = N(n) > 1 such that the following is true. Let A C R™ and let F be a
collection of balls in R™ with centres in A for which every point of A is the centre
of some ball in F, and D = supgc r diam B < co. Then there exists countable
subcollections Gy, ...,Gy C F each of which consists of pairwise disjoint balls
and such that A C Uf;l UG.

Remark. This says that G = Uf\; G; is a countable collection of balls from F
such that each point of A is contained in at most N(n) balls. More analytically,

this implies
Y dp(z) <N vzel G
Beg

Assuming the theorem is true, we have

B;) < B;) = / Ip,d S/
U(JQ i) ;N( i) ; U By B; Ap U

Proof. Let’s assume A is bounded. We will construct a list {5, (aj)}f:17 where
possibly J = 400 and such that:

> s, du< Nu(|JB

521 Bj j=1 j=1

(i) j >i = r; > 2r; [the radii do not grow too quickly];
(ii) {B,,/3(a;)}]_, is disjoint;

J
(iii) A C Uj=, Br;(ay).

Take By = B,,(a1) with a; € A and r; > %% If we have already found
inductively By, (a1),..., By,_,(a;_1), set A; .= A\ U], By, (a;) and pick B; =
B,,(a;) with a; € A; and r; > 2sup{r : B.(a) € F,a 6 A} TEA; =0, thcn
J =j — 1 and we stop.

Check (i): notice A; is decreasing and so if j > ¢ then a; € A; and r; >
Ssup{r: B,(a) € F,a € A;} > 3r;.

Check (ii): For j > i, |a; —aj| > r; = %ri + %ri > %ri + %%rj > %ri + %rj.

Check (iii): If J < oo, it’s immediate. Otherwise, notice from (ii) we get
that r; — 0 as ¢ — oo. Now pick some @ € A. Then there is Bz(a) € F. And
eventually r; < 4F Which implies that 7 > sup{r : Bs(r) € F,a € A;} and so

aé¢ A, ie. aGUZ, 1 By, (ai).
Claim. Fix k € {1,...,J}. Write I = I}, := {j < k: B; N By, # 0}. We claim
there exists N = N(n) with |I| < N.

Let’s see why the claim suffices. For i = 1,..., N, let G = {B,,(a;)}. Having
constructed Gf for i = 1,..., N and ¢ < L such that each gf is a disjoint collection
of balls from {B,, (a )} 5—1, to construct G; L+1 proceed as follows: since

{j < L+1:B,(a;)NB,,,, (ar+1) # 0} < N,
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there exists i’ € {1,..., N} such that BN B, (ar4+1) =0 for all B € Gf. So set

Gt =Gf U{Bry,(azs1)} and G =G fori# i

Then the collections G; = |J,o; G works as in the statement.

Proof of clatm. Write K == {j € I : v; < 3ri}. If i € K then |a;—ag| < r+7y.
So take x € By, /3(a;). We have: |z—ag| < |v—a;|+|a;—ar| < dri+ri+r < 5y
So By, /3(a;) C Bsy, (ax). Since k > i, r, < 4/3r;, so 3/4ry <y

S (%) <5 (5) <o

ieK i€EK

Cancel the the ] to get |K| < 20™.

So we are left to bound I\ K. Pick i, € I \ K. Let 6 € [0, 7] be the angle
between a; — a; and a; — ay.

Final claim. We claim there exists 6y = 6p(n) > 0 such that 6§ > 6.

This suffices because there exists ro € (0,1) such that if z € 9B;(0) and
Y,z € By, (z), then angle between y and z is < 6. And there is some constant
L = L(n) such that 0B;(0) can be covered by L balls of radius ro centred on
0B1(0) but not L — 1 such balls. So by rescaling/translating, 9B, (ax) can be
covered by L balls of radius rory centred on dBj, but not L — 1 such balls. So
since the rays through a; and a; from a; have angle bounded below by 0y, we
will conclude [T\ K| < L.

Proof of final claim. Translate ap to origin. We know that 3r; < r; <
la; — 0] < r; + 71k, 3rk <71 < la; — 0| <r; +r, and we can WLOG |a;| < |a;].
If |a; — a;| > |aj|, then:

|a;|* + |a; > — |a; — a4]?

0 < Lai 1
cosf = < = < =,
2|ag|ay] 2|a;] ~ 2

Now suppose |a; — a;| < |a;|. We are also free to assume cos§ > 5/6. Then

lai|* + la;|* = |a;i — a4/

2 <
6 2laiflay]
(la] = lai = a)(Ja| + la: — a;])
aillay|

IN

|aj] — lai — a4

N

so |a; —aj| < rj. This tells us a; € By, (a;). So we know that j > 4, which means
r; < la; — a;| and we can deduce r; < %ri.
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Now
cosg = 1ail* +la5* = lai — 4|

2|as|a;|

_ (ail = la;D* = las = a5*
2|asl]a;|

_ (ail = lag| = lai = a;1)(lail = lag| +]ai = a;])

2|as|a;]
_ ¢ (Hlail +lag| +lai — a)(Jai| — |aj| +|ai — a5])
2|as|a;|

We can bound the second term: using |a;| > ry, |a;| < r; + 75, |a;i — aj| > 74,

(=las| + laj| + lai — az) (il —la; +lai —az]) _ rilri —rj — 7+ 74
2|asl|a;| 2(ri +71)lay|
rilgr; — i
= 2(ri 4 r)ay]
TiET;
= 2(ri + i) lay]

12 7 + 1y |aj)
3 ) 4, . . 4, o 133 _ 3
Notice r; + 7 < 374, and |aj| < 7; + 1 < 375, so above > 555 = ;- So
6 > arccos(8L) =: 6y > 0. O

Corollary 2.2. Let A C R™ and let u be a Radon measure on R™ with p(A) < oo.
Given an open set U C R™ and a collection F of closed balls with infp _(4,)er 7 =0,
Va € A, there exists countable disjoint subcollection G C F with

° UBEgBCU;

o n((ANU)\Upeg B) =0.

Proof. Take F' :={B,(a) € F:a € ANU,r <1,B,.(a) C U}. Apply Besicovitch
to get countable disjoint subcollections G, ...,Gy with ANU C Uf\;l UBegi B.
This implies that p(ANU) < Zivzl m(ANUNUpeg, B). There exists ig €
{1, ..., N} with ,u(AﬂUﬂUBegiO B) > %u(ANU). Choose 6 € (0, 3). So there
are disjoint balls By, .., Buy, € Gy, with p(ANU N, B;) > 0u(ANU). This
implies u(ANU \ ij:ll Bj) < (1—-60)u(ANU). We can inductively repeat this
process to get for each ¢ > 1, a disjoint union of balls ﬂ;‘i"l B; with

M,
plANUNJ B | <@=0)uAnD).
j=1
So in the end |J;Z, B; works. O

10
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3 Densities and Differentiation of Radon Mea-
sures

Definition 3.1. Let u,v be Radon measures on R™. The upper density of v
with respect to v is

Dyv(x) = Hmsup.jo % if vr > 0, u(Br(2)) > 0
' +oo if 3r > 0, u(B,(x)) =0,

The lower density of v with respect to pu is

hmmfrw w5 ( )i > 0, u(Br(z)) > 0
+00 if Ir > 0, u(B,(z)) =0,

Dyv(z) = {

We say v is differentiable with respect to p at x if D,v(z) = D,v ().
Lemma 3.2. Let u, v be Radon measures on R™ and let o € (0,00). If
Ac{zeR": D,v(z) <a},
then v(A) < ap(A). And if
Ac{zeR":D,v(z) > a},
then v(A) > au(A).

Proof. We will prove the first statement in detail. By restricting to compact
sets, we will assume p and v are finite. Fix ¢ > 0 and an open set U D A.
For each a € A, there exists arbitrarily small radii » > 0 for which v(B,(a)) <
(a+ €)u(By-(a)). So, we can consider

F={Bi(@) CU:aeAv(B (@) < (a+u(B(a)}.

By Corollary 2.2, there exists countable, disjoint subcollection G C F with
Upeg B C U and v(A\Upeg B) = 0. Now v(A) = v(Upeg B) = > peg ¥(B) <

(a+e€) X geg(B) = (a+e)u(Upeg B) < (a+¢€)u(U). By outer regularity and
arbitrariness of €, we are done. O

Theorem 3.3. Let i, v be Radon measures on R". Then D, v:
(i) exists p-a.e.;
(ii) is finite p-a.e.;
(iii) is p-measurable.

Proof. Once again, assume p and v are finite. Write I :== {z € R" : D,v =
+oc0}. Then for any a > 0, we have I C {D,v > a}, and so by Lemma 3.2,
n(I) < 2u(I). Since v(I) < oo, we deduce p(I) = 0.

For a,b € Q with a < b, let Ry} = {D,v < a < b < D,v}. Now
{Dv does not exist} C U,y 4 peq fab: and from Lemma 3.2, we have

b/-j/(Ra,b) < V(Ra,b) < a’/”'(Ra,b)-

11
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But a < b, so we must have y(Rqp) = 0. Observe now that x — u(B,(z)) is
Borel measurable for any fixed > 0 and any Radon measure p (this follows
from the fact that it is upper semicontinuous). Then for fixed k € N,

V(Bl/k(w)) : D ()
v d iBore) if u(Byx(x)) >0,
0 otherwise

is Borel measurable. Now it follows D, is Borel measurable, just by taking
lim inf, lim sup. O

Theorem 3.4 (Radon-Nikodym Derivatives). Let u, v be Radon measures on
R™ and suppose v < p. Then, for every pu-measurable set A C R", we have:

A) = /A D) dpu(x)

Recall that v < means v is absolutely continuous with respect to p, whose
definition is u(A) =0 = v(A) = 0 for all g-measurable A C R"™.

Proof. We claim the sets I = {D,v = +o0}, Z ={D,v =0} and U = {D,v <
D,v} are all v-null. p(I) = p(U) = 0 from Theorem 3.3, so by hypothesis,
v(I)=v(U)=0. And Ve > 0, Z C {D,v < €}. So by the lemma, v(Z) < eu(Z).
Assuming for now that p, v are finite, we deduce v(Z) = 0. Fix p-measurable
A CR" Form € Z and t > 1, write A, == {z € A:t™ < D v(z) < ™1}
These are all y-measurable. This implies v-measurable: take Borel B D A,
with pu(B) = p(Ay,). Then u(B\ An) =0. Sov(B\ A,,) =0. So B\ 4,, is
v-measurable. And A4,, = B\ (B\ 4,,) so is v-measurable. Now:

/Duydu— / D Vd/,é—l-/ D Z/d,u<tm+1 Z
A

meZ meZ
<ty v(Ap) =tv(| ] Am) =tv(A
meZ meZ

because v(IUZUU) = 0. Also

A) =t > v(Ay) <t (A tQZ/ Dudu—tQ/Dud,u

mEZ meZ meZ
Now let t | 1 to complete. O

Definition 3.5. We say two Radon measures u, v on R™ are mutually singular,
and write p L v, if there exists a Borel set B C R"™ such that u(B) = v(B°) = 0.

Theorem 3.6 (Lebesgue Decomposition). Let u, v be Radon measures on R”™.

There exists Radon measures v, and v, with: (1) v = vae + vs; (i) Vae < 15

(iii) ps L p; (iv) Dpv = Dyvge p-ace.; (v) Dyvs =0 prace. [So, by Theorem 3.4:
A) = [, Dyvdp+ vs(A) for all y-measurable A C R™ ]

Proof. Again assume p,v are finite. Let £ = {Borel B : u(B¢) = 0}. Let
{Br}72, € € be such that v(By) < inface v(A) + §. Then B = (7, By is
Borel, and p(B¢) < > o, u(Bg) = 0. And v(B) = inface v(A4). So write
v| B¢ = v, and v, = v|B. Clearly vs(B) = 0.

12
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We check (i)-(iii). Take p-measurable C' with u(C) = 0. Suppose (for
contradiction) that v,.(C) = v(C N B) > 0. Take Borel S D B\ (C' N B)
With vae(S) = vae(B \ (C 1 B)) < v(B). And u((S 1 B)") < u(S%) + u(B°) <
w(C) +2u(B€) = 0. So we violate the fact that v(B) = inf ace v(A).

It is enough to show (v) as (iv) is equivalent. With 7' := {x € B : D, vy >
a > 0}, we have v4(T) < vy(B) = 0 and pu(T) < 2 (T) = 0. And since
pu(B¢) = 0, we deduce D v, = 0 p-a.e. Then by additivity of density with
respect to 4 (up to sets of y-measure zero), we deduce (iv). O

Theorem 3.7 (Lebesgue-Besicovitch Differentiation). Let u be a Radon measure
on R™. If f € L} (R™; ), then for u-a.e. x € R™ we have

loc

1
i ) o, )0 = T
And for p € [1,00), if f € L, (R™; ), then for p-a.c. z € R,
1
lim ———— ) — Py _o
rl0 p(By(x)) /Br(x)|f( ) = f)I" du(y)

Proof. Let f* be positive and negative parts of f. For Borel B C R”, define
vE(B) == [ f*dp. And for general A C R™, define

vE(A) = inf{v*(B) : B Borel, B D A}.

One checks now that v* are Radon measures, absolutely continuous with respect
to p. So by Radon-Nikodym, for every Borel B C R”, we have v*(B) =
[ [T du= [ Dyv* du. We deduce that D, v* = f* p-ae.. Now, for p-ae. z,

— + _ -
/B - fy) duly) = /B - f7(y) duly) /B . f~ () duly)
= v (By(2)) — v~ (By(2)).
Divide both sides by u(B,(z)) and send 7 | 0. Then

1
lim s [ FW) () = Dt (@)= Dy (@) = £ (@) (@) = o)
rl0 (B (7)) JB, (a) g "
Note: the lecturer mixed up closed balls and open balls, so replace all open balls
with closed balls.
For the second part, let {r;}32; be dense subsets of R and apply the first
statement to = — |f(z) — r;|P € L}, .(R™, u) for each j. So now there exists a

p-null A C R™ such that if ¢ A then for all j,

. 1

i s | ) =l ) = 176) i
So pick r; with |r;— f(z)| < e. Using |f(y)—f(z)|P < 2P(|f(y)—r;[P+|f(z)—7r;7),
and send € | 0. O

Remark. With Lebesgue on R”, apply to 1 for Lebesgue measurable E. Then

for almost every = € F,

Leb(B,(z) N E°)
"0 Leb(B,(z))

=0.
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4 Area and Co-area

Developing a rigorous notion of area in R™ was one of the main driving forces
for developing Geometric Measure Theory. For a few minutes I will treat you
like Calculus 101 students.

Let D be the open disk in R2. Then to evaluate Area(D) = fBl(O) dzdy we
use change of variables. Let’s use polar coordinates. There’s this thing called r
and 0, and we can integrate over r € (0,1] and 6 € [0,27). But it’s dangerous to
show them a picture of a rectangle in the (r,6) plane. It’s confusing for some
people. It’s not the same as the area of the rectangle foQ T fol drdf. At the heart
of this example of course is some function F(r,0) = (rcos@,rsinf). What’s the
area of F(rectangle)? We work out the Jacobian. This gives us fOQW fol rdrdf.
We generalise this to F' almost everywhere differentiable. We will focus on F
being Lipschitz.

Proposition 4.1. A continuous increasing function f: [a, b] — R is differentiable
almost everywhere.

Proof. With F = {(c,d) : (¢,d) C [a,b]} and (((c,d)) = f(d) — f(c), let &%
be the outer measure produced by Carathéodory’s general construction. This
is a Radon measure. So by decomposing . with respect to .Z!, we get an
Z1-measurable function g: [a,b] — R, a Radon measure v and a set S C [a, b]
such that v([a,b] \ S) =0, Z1(S) = 0 and such that for every #!-measurable
A C la,b], we have Z5(A) = [, gd. L + v(A). Since f is continuous, we can
check that Z¢((c,d)) = f(d) — f(c). Now, look at

f(m+h}1_f($> _g($> _ gf((ﬂj,hl"f’h)) —g(m)
1t 1
5[ WL ) - @) + i)
o th v((z,x
<o [ o - wlagip) + L)
oth v([x — h,x
<250 [ lot) - gt a4 22D,

As h ] 0, this goes to zero for almost every z (first term by Lebesgue differentia-
tion, second term because D g1v =0 ZL'-a.e. O

Remark. v is the failure of the Fundamental Theorem of Calculus — it is called
the Cantor part of the derivative. See the Devil Staircase.

Proposition 4.2. Let f: [a,b] — R be Lipschitz. Then f is differentiable
Llae., f' € L™, and f(z) = f(a) + [T f/(t)dt for all z € [a,b].
Proof. Write

Vi(x) = sup Z |f(z;) = flzjm1)|ra<zop<a1 < ...<xp <2
j=1

14
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Notice Z;.Lzl |f(z;) — f(xzj—1)|] < Lip(f)(b— a). This function is continuous and
increasing [exercise]. And so is V(z) — f(x), so that we can use this function
to express f as the difference of two continuous, increasing functions. So by
Proposition 4.1, f is differentiable #*-a.e. Since |f(x + h) — f(z)| < Lip(f)|h],

we get || f’ ||L(x, < Lip(f).
Write F(x) = [ f'(t) d.Z*(t). So now:

1 et 1 (F(x+h)—F(x) F(z)—F(zx—h)
Qh/w_hf(t)dt:Q( ) " )

h

Since F' is Lipschitz, it is differentiable almost everywhere, and using Lebesgue
differentiation on the left, we deduce, f'(z) = F'(z) £ -a.e.

Now g = F — f is Lipschitz with ¢’ = 0 #!-a.e. [We want to conclude that g
is constant, and we need to use the Lipschitz condition. This step is surprisingly
hard. As far as the lecturer knows, we need to use a covering lemma.|

Let E C (a,b) be the set with Z1((a,b) \ E) = 0 and such that g is
differentiable at each point of E with derivative zero. Fix = € (a,b) and
€ > 0. Using Corollary to Besicovitch, there exists a countable disjoint collection
[zj — hj,z; + hj] C (a,z) for j = 1,2,... with |g(z; + h;) — g(z; — hj)| <
2hje and £! (E N (a,2) \ U2 (25 — hy, 25 + hj]) = 0. Fix N > 1 such that

Z1 (E N (a,z)\ Uj-vzl[:zcj — hj,x; + hj]) < ¢, and write the intervals in order.

So now, since

N—1
oy — by —al + > [(2j41 — hjgr) = (25 + By)| + |z — (25 + hy)| < €,
j=1

we know
|f(z1—h1)— \+Z 19(xj+1—hjr1)—g(@;+h;) |+|g(x)—g(zn+hn)| < 2Lip(f)e.
So now,
N
19(a) — 9(2)| < 2Lip(f)e + 3 lg(a; + hy) — gl — hy)| < 2Lip(He +2(b — a)e
j=1
So since € > 0 was arbitrary, we can deduce g(z) = g(a) for all z € (a, b]. O

Theorem 4.3 (Rademacher’s Theorem). Let f: R™ — R be Lipschitz. Then f
is differentiable Z"-a.e.

Proof. For any z € R"™ and ‘direction’ w € S"~! = 9B;(0), the function
t — f(z + tw) is a Lipschitz function on the line ¢, ,, = {z + tw : t € R}
and hence for Z'-a.e. t € {,,, the derivative %f(x + tw) exists. So let A,
denote the set of points x € R™ at which the derivative %|t:0f(:c + tw) exists.
Then A¢ N4, has .Z!-measure zero for any y € R™. So, by Fubini’s Theorem,
Z"(R"\ A,) = 0 for every w € R™.

15
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Next, we check that D, f(z) == 5 }t of (x + tw) is equal to 37, wID;f(x)
a.e. Fix § € C(R™) and consider

flz +tw) _f(x)f(x)dx: B &(z) — &z — tw)

' t . t

f(z)da.

By Dominated Convergence Theorem,

DLf@g()de =~ [ ZwﬂD T
- / ijf(x)g(x) do

Since this holds for arbitrary £ € C2°(R™), we have D, f(x) = 37, w/ D; f(x)
ZL"-a.e.
Finally, let wy,ws, ... be dense in S"~! and write

Qorh)(a) = LD @y gy,

R

For each k € N, let Ay be the set of x for which D,, f(x) exists,
Dy f(z),..., Dy f(x) exists and D, f(z) = 27:1 wiD;f(z). Then let A =
req Ak We know that Z"(R™\ A) = 0 and for each z € A and k € N,
we have Q(wg,h)(x) — 0 as h — 0.
Fix 79 € A and € > 0. There exists K such that S"~! C UJKZ1 Be(wj),
then let h be such that |h| < h = max;_1__x |Q(wj,h)(z0)| < e. And now

1Q(w, h)(xo)| < [Q(w; h)(w0) = Q(wi, h)(20)|+|Q(wi, h)(wo)], (Where [w—w;| <€),
so that for |h| < h,

flx+ hw) — f(x + hw;)
h

< (2Lip(f) + 1)e.

Think carefully as to why bound of this form suffices. O

1Q(w, h)(xo)] <

ijDf x)dx|+e

Area Formula

Given f: R™ — R"™** Lipschitz, write D f, for the linear map from R” — R"t#
with matrix (Djfl(:v)) —1,...ntk,j=1,....n- And write

z) = /det((Df:)* o Dfa),
called the Jacobian matrix.

Theorem 4.4 (Area Formula). Let A C R"™ be £™-measurable and let f: A —
R"™** be Lipschitz. Then

o H'(f(A) = [, Tf(x)dL"(x) if f is injective.

16
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e In general

HO(AN 1 (y)) dH" () /Jf ) A2 ().

Rn+k

e And if u: A — R is Z"-integrable, we have

Remark. (i) If AC R™ and f: A — R Lipschitz, then

u(ar) AH" () = /A (@) T f(x) 12" (x).

zef~1(y)

f(x) = nf[f(z) + Lip(f)[z — 2]

z€EA
is a Lipschitz function on R™ with f|4 = f and Lip(f|4) = Lip(f).

(ii) Notice that (for the purposes of proving the theorem), we can assume that
f is differentiable on all of A.

To prove the first statement in the theorem, you approximate by linear
functions.

Example For f:[0,1] — R* Lipschitz, Jf = |(%f1,...,%fk)| = |f(®)], so
HL(f([0 fo |f )| dt holds for injective parametrisation of a curve, cf
Analyst S vaellmg Salesman Problem.

Coarea Formula

Given f: R™** — R™ Lipschitz, write D f, for the linear map from R"t* — R"
with matrix (Djfi(x))i:l,...,n7j:1,‘..,n+k- And write

x) = \/det(Df, o (Df,)*).

Another Calculus 101 digression Let f: D — [0, 1] be the function from

the disk in R? to R by f(z,y) = /22 + y2. If we have t € [0, 1], then f~1({t})
is a circle. For each level set, find the length of the circle then integrate over ¢:

/H L{t))) de /0127rtdt7rArea(D)/Dld’H2.

Theorem 4.5 (Coarea Formula). Let A C R""* be #"+F-measurable and
f+ A — R™ be Lipschitz. Then:

D) Jen HHNAN N Y) A1 (y) = [, Tf (@) AL ().
(ii) And if u: A - R is Z”*k—integrable,

/ (/ u(x)d’Hk(x)> dH"(y) = / u(z)J f(x) d$"+k(x).
" =1 (w) A

Remark. For appropriate f, you will sometimes want to take u = 1/Jf. If
n=1,wehave [p [ 1, IVilfl dHF dH! = Z7HL(A).
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5 Rectifiability and C' submanifolds
Theorem 5.1. If f: R® — R is Lipschitz, then given ¢ > 0 there exists C!
function ¢g: R™ — R with Z"({f(z) # g(z)} U{Df(z) # Dg(x)}) < e.

Theorem 5.2 (Whitney Extension — C! case). Let A C R" be closed and
let f: A — R be a continuous function. Suppose v: A — R" is a continuous
function for which

fly) = flx) —v(z)(z —y)

lim  sup =0
810 2 yck |z —yl
0<|z—y|<d

for all compact K C A. Then there exists a C'! function g: R"® — R with g|4 = f
and Dgla = v.

Remark. If A has an interior, then the condition on v implies that the derivative
of f is already v.

Proof. We will describe the Whitney decomposition of A¢. Define the kth dyadic
mesh as

e ;a+1
()
The key property is that if Q, Q" € U,y 4 and intQ NintQ’ # (), then either

Q C @ or Q) C Q. Then define kth layer from A as
Q= {z e R": (2¢/n)27" < dist(z, A) < (2y/n)27F+1}.

|:Qn gn +1

ok ok ]CR":ql,...qHEZ}.

Now set

Fo=J{Qe Q. #0}.

kEZ

Notice that each cube @ € .%; intersects at most 2 different dyadic layers.
So if Q,Q" € Fy are such that intQ Nint@’ # 0, then if Q' O @, we have
diam(Q’) < 4diam Q. So for each Q € %y, {Q' € % : Q' D Q} is actually finite.
So let % be a subcollection of %y which is maximal with respect to inclusions
(i.e. for each cube Q € %y, take biggest cube containing it). We see now that

(i) int@Q NintQ" = 0 for all Q, Q" € .F;

(i) 4° = Uges Q-

But much more is true. If Q € % N .#,. then there is a point g € Q N Q; and
this means dist(xg, 4) < (2¢/n)27%F! = 4diam Q. So dist(Q, A) < 4diam Q.
And, for any a € A,z € Q, we have

(2vn)27F < |wo — a| < |wo — 2| + |z — a| < diam(Q) + |z — al,
50 |x — a| > diam(Q), i.e. diam @ < dist(Q, A). So
diam(Q) < dist(Q, A) < 4diam(Q).

Next, if Q,Q" € F are adjacent cubes (Q N Q' # 0), then diam(Q)
dist(Q, A) < dist(Q’, A) +diam(Q’) < 5diam(Q’). In fact this means diam(Q)
4diam(Q").

INIA
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A given cube @) € .} intersects 3" cubes in .#}, and each cube in .#}
determines 4™ cubes in .#} 2. So at most 12" cubes in .Z intersect Q.

Now, if Q, Q' € F are not adjacent, i.e. Q N Q' = 0, then there is some other
cube Q" such that dist(3Q’, Q) > e(Q”) — £e(Q’) > 0 where e is the edge length.
So 9Q’ﬂQ7é ) = Q’ﬂQ 75@ Sonowforany:z:o € A€, z9 € Q for some Q € F.
Andl{ $Q' 1 3Q' 3o} <H{3Q': 3Q'NQ # 0} < {3 Q"Q’QQ#@}I < C(n).
So {2 Q’ : Q' € F} has bounded overlap, in the sense that

Y lg <C(n)

QeF

Now the next part we are going to be sketchy. Let Q¢ denote the unit cube at
the origin. Let ¢ € C2°(2Q0) with ¢ =1 on Qo, 0 < ¢ < 1, and the derivatives
are bounded by a constant that only depends on the dimension of the space and
the power of the derivative, i.e. |[D%p| < C(n,|a|). Then set

po(@) = ¢ <:ce(;)@> :

where g is the centre of the cube Q). Then

o) = YQ
@ EQ'e]—' P’

is a locally finite partition of unity (the sum is only ever a finite sum). For each
cube @ € F we also pick pg € A with dist(Q, A) = dist(Q, pg). Finally, set, for
x € A°,

= > ¢o@)(f(pe) +v(pe) (= — pg))-
QeF
It is now quite a lot of checking to verify that this works. O

Proof of Theorem 5.1. There exists A; C R™ such that Z"(R™\ 4;) =0 and f
is differentiable on A; (Rademacher). By Lusin, there exists Ay C A; such that
ZL"(A1\ A2) < €/4 and Df| 4, is continuous. For k € N, let

(@)= sup LW ZS@=DI@ )

yeBy i (x)\{z} [z =y

We know 1, — 0 pointwise on As. By Egoroff’s Theorem JA435 C A, with
ZL"(Ag\ As) < €/4 and such that n, — 0 locally uniformly on As. And then
by inner regularity, there exists a closed A C Az with Z"(A3\ A) < ¢/4. Now
apply Whitney extension on A with v = Df. O

Definition. A set M C R"** is said to be countably n-rectifiable (or often just
n-rectifiable or rectifiable) if H"(M N K) < oo for all compact K C R"** and
M C MyUlU;2, Fj(R"), where H"(Mp) = 0 and Fj: R" — R"** are Lipschitz
functions.

Exercise. If M is n-rectifiable then M C MU Ujoil N, where H(My) = 0 and
N; are embedded n-dimensional C!-submanifolds of R"**.

Definition. Let M C R™"* be a set with the following property: Yy € M, 3
open sets U C R*T* V c R® and a C* map ¥: V — U such that
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(i) yel;

(if) W(V)=MnU;

(iii) ¥ is injective;
) D
) ¥

(iv) DU (x) is injective for every x € V;

~1(K) is compact in V whenever K is compact in U [properness].

(v

Then we say that M is a (properly) embedded n-dimensional C*-submanifold of
Rk,

Remark. Notice if A C U is Borel, then H"(ANM) = fq,_l(A) J U dH", by
the area formula. And

J U = det(D;¥ - D; W)/,

i.e. in the language of differential geometry, Riemannian volume on M is given
by v/det g, where g;; = D;¥ - D;W¥ is the metric induced by coordinates given by
U vy

Definition. Let (11;)32; and p be Radon measures on the metric space X. We
say p; — (4 in the sense of Radon measures if p1;(f) — p(f) for all f € C.(X).
[In probability, this is weak convergence of measures.] Space of Radon measures
on X is C.(X)* and so this is a w*-convergence in the functional analysis sense.

Definition. We say that M C R"* has an approzimate tangent plane P at
xog € M if H™ gy (M) — H"|P as p — 0 in the sense of Radon measures,

where 1, p(2) =

Exercise. If M is n-rectifiable then it has an approximate tangent plane at
‘H™-almost every point of M.

Theorem. Suppose M C R"** has H*(MNK) < oo for all compact K C R*+k,
If M has an approximate tangent plane at H"-a.e. point of M, then it is n-
rectifiable. By taking f € C.(R"**) with 0 < f < 1, f = 0 on B;,.(0)¢ and
f =1 on B;(0), we have

H*" (M NB
OB o O B0 = [ a4 0),
Wnp Nzq p(M)
and so if M has approximate tangent plane at xo, then lim, o H(Aimif(%))

This is the start of a very long story.
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