Part III — Introduction to Geometric Measure Theory

Based on lectures by S Becker-Kahn Notes taken by Daniel Ng

Lent 2020

Contents

1	Measure Theory	3
2	Covering Theorems	8
3	Densities and Differentiation of Radon Measures	11
4	Area and Co-area	14
5	Rectifiability and C^1 submanifolds	18

1 Measure Theory

Carathéodory's Construction

Definition 1.1. Let X be a set. An outer measure on X is a function $\mu: 2^X \to [0, +\infty]$ such that (i) $\mu(\emptyset) = 0$, (ii) (subadditivity) $\mu(B) \leq \sum_{j=1}^{\infty} A_j$ whenever $B \subset \bigcup_{j=1}^{\infty} A_j$.

We 'll describe a general method for building outer measures on a metric space (X, d). Fix $\mathcal{F} \subset 2^X$ and a function $\zeta \colon \mathcal{F} \to [0, +\infty]$. For $A \subset X$ and $\delta > 0$, define

$$\mathcal{C}_{\delta}(A) = \{\{S_j\}_{j \in J} : A \subset \bigcup_{j \in J} S_j, J \text{ countable, diam } S_j < \delta, \forall j\}$$

The diameter is diam $S_j = \sup_{x,y \in S_j} d(x,y)$. Then for $\delta > 0$, define

$$\mu_{\delta}(A) = \inf \left\{ \sum_{j \in J} \zeta(S_j) : (S_j)_{j \in J} \in \mathcal{C}_{\delta} \right\}.$$

If $0 < \delta_1 < \delta_2 \le \infty$, then $\mu_{\delta_2}(A) \le \mu_{\delta_1}(A)$. This means $\mu(A) = \lim_{\delta \downarrow 0} \mu_{\delta}(A) = \sup_{\delta > 0} \mu_{\delta}(A)$ exists. [Exercise: both μ_{δ} and μ are outer measures.]

Example 1.2. Lebesgue Outer Measure. Let \mathcal{F} be all boxes in \mathbb{R}^n . Let $B = \prod_{i=1}^n I_i$ where $I_i = [a_i, b_i]$ are intervals and $\zeta(B) = \prod_{i=1}^n (b_i - a_i)$.

s-dimensional Hausdorff measure. In \mathbb{R}^n , s > 0, take $\mathcal{F} = 2^{\mathbb{R}^n}$ and $\zeta(A) = \omega_s (\operatorname{diam} A/2)^s$, where ω_s is a normalising constant. We pick ω_s so that if, for example s = n, then $\mathcal{H}^n = \mathscr{L}^n$, i.e. we need \mathcal{H}^n -measure of a ball of radius 1 to be $\pi^{n/2}\Gamma(n/2+1)^{-1}$, where $\Gamma(q) = \int_0^\infty t^{q-1} \exp(-t) dt$. You get the same measure if you take \mathcal{F} to be all closed sets or all open sets [exercise].

Definition 1.3. Let μ be an outer measure on a set X. We say $A \subset X$ is μ -measurable if

$$\mu(C) = \mu(C \cap A) + \mu(C \cap A^c) \qquad \forall C \subset X.$$

To remember whether A or C is the test set, remember that we want to define measurable sets A to have nice boundaries.

Remark 1.4. Note that A measurable iff A^c measurable. From subadditivity, we always have \leq . So we just need to check

$$\mu(C) \ge \mu(C \cap A) + \mu(C \cap A^c) \qquad \forall C \subset X.$$

Theorem 1.5. Let μ be an outer measure on X and $(A_j)_{j=1}^{\infty}$ be μ -measurable sets. Then

- (i) $\bigcup_{j=1}^{\infty} A_j$ and $\bigcap_{j=1}^{\infty} A_j$ are measurable;
- (ii) If $(A_j)_{j=1}^{\infty}$ are disjoint, then $\mu(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} A_j$.
- (iii) If $A_1 \subset A_2 \subset ...$ is an increasing sequence of sets, then $\lim_{j\to\infty} \mu(A_j) = \mu(\bigcup_{j=1}^{\infty} A_j)$.

- (iv) If $A_1 \supset A_2 \supset ...$ is a decreasing sequence of sets with $\mu(A_1) < \infty$, then $\lim_{j\to\infty} \mu(A_j) = \mu(\bigcup_{j=1}^{\infty} A_j)$.
- *Proof.* (i) We first show that measurability is closed under finite unions and intersections. For any $C \subset X$,

$$\mu(C) = \mu(C \cap A_1) + \mu(C \cap A_1^c) = \mu(C \cap A_1) + \mu(C \cap A_1^c \cap A_2) + \mu(C \cap A_1^c \cap A_2^c) \ge \mu(C \cap (A_1 \cup A_2)) + \mu(C \cap (A_1 \cup A_2)^c),$$

because $A_1 \cup A_2 \subset A_1 \cup (A_1^c \cap A_2)$ and $A_1^c \cap A_2^c = (A_1 \cup A_2)^c$. By induction, measurability is closed under finite unions and intersections.

(ii) If $(A_j)_{j=1}^{\infty}$ is disjoint, then set $B_N = \bigcup_{j=1}^N A_j$. Then

$$\mu(B_{N+1}) = \mu(B_{N+1} \cap A_{N+1}) + \mu(B_{N+1} \cap A_{N+1}^c) = \mu(A_{N+1}) + \mu(B_N).$$

By induction, $\mu(\bigcup_{j=1}^{N} A_j) = \sum_{j=1}^{N} \mu(A_j)$. By subadditivity, $\sum_{j=1}^{N} \mu(A_j) = \mu(\bigcup_{j=1}^{N} A_j) \le \mu(\bigcup_{j=1}^{\infty} A_j)$. Take $N \to \infty$ to one inequality. Use subadditivity to obtain the other inequality.

(iii) If A_j are increasing, then write their union as disjoint annuli:

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \mu\left(A_1 \cup \bigcup_{j=1}^{\infty} (A_{j+1} \setminus A_j)\right)$$
$$= \mu(A_1) + \sum_{j=1}^{\infty} \mu(A_{j+1} \setminus A_j)$$
$$= \lim_{N \to \infty} \mu(A_{N+1}).$$

(iv) If A_j are decreasing, then $\mu(A_1) \leq \mu(\bigcap_{j=1}^{\infty} A_j) + \mu(A_1 \setminus \bigcap_{j=1}^{\infty} A_j)$. So

$$\mu(A_1) - \mu\left(\bigcap_{j=1}^{\infty} A_j\right) \le \mu\left(A_1 \setminus \bigcap_{j=1}^{\infty} A_j\right)$$
$$= \mu\left(\bigcup_{j=1}^{\infty} (A_1 \setminus A_j)\right)$$
$$= \lim_{N \to \infty} \mu(A_1 \setminus A_N)$$
$$= \mu(A_1) - \lim_{N \to \infty} \mu(A_N)$$

Since $\mu(A_1) < \infty$, we can cancel it from both sides.

(v) We go back to showing (i) for countable unions and intersections. Take $C \subset X$. If $\mu(C) = \infty$ then we automatically have $\mu(C) \ge \mu(C \cap \bigcup_{j=1}^{\infty} A_j) + \mu(C \cap (\bigcup_{j=1}^{\infty} A_j)^c)$. So WLOG $\mu(C) < \infty$. Consider the outer measure $\mu \lfloor C$ given by $(\mu \lfloor C)(B) = \mu(C \cap B)$. Easy to see all A_j are $(\mu \lfloor C)$ -measurable. Now $\mu(C \cap \bigcup_{j=1}^{\infty} A_j) = \lim_{N \to \infty} (\mu \lfloor C)(\bigcup_{j=1}^{N} A_j)$ and $\mu(C \cap (\bigcup_{j=1}^{\infty} A_j)^c) = (\mu \lfloor C)(\bigcup_{j=1}^{N} A_j)$.

 $\lim_{N\to\infty} (\mu \lfloor C)((\bigcup_{j=1}^N A_j)^c)$. The proof is completed by adding these lines together and using the fact that the finite union is $(\mu \lfloor C)$ -measurable.

Definition 1.6. An outer measure μ on X is said to be *regular* if for every $C \subset X$ there exists a μ -measurable set $A \supset C$ with $\mu(A) = \mu(C)$.

Definition 1.7. An outer measure μ on a topological space X is said to be *Borel* if every Borel set is μ -measurable; and is said to be *Borel regular* if it is Borel and for every $C \subset X$ there exists a Borel set $A \supset C$ with $\mu(A) = \mu(C)$. Note being Borel regular is not the same as being Borel and regular.

Proposition 1.8. Let μ be a regular outer measure on X. If $A_1 \subset A_2 \subset ... \subset X$, then $\lim_{j\to\infty} \mu(A_j) = \mu(\bigcup_{j=1}^{\infty} A_j)$.

Remark 1.9. The A_j need not be μ -measurable.

Proof. For each j, pick measurable $A'_j \supset A_j$ with $\mu(A'_j) = \mu(A_j)$. Then set $B_N = \bigcup_{j=N}^{\infty} A'_j$. Notice $A_N \subset B_N$. And then notice $\mu(A_N) \le \mu(B_N) \le \mu(A'_N) = \mu(A_N)$. Therefore

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) \le \mu\left(\bigcup_{j=1}^{\infty} B_j\right) = \lim_{j \to \infty} \mu(B_j) = \lim_{j \to \infty} \mu(A_j).$$

Definition 1.10. An outer measure μ on \mathbb{R}^n is said to be a *Radon measure* if it is Borel regular and $\mu(K) < \infty$ for all compact $K \subset \mathbb{R}^n$.

Example 1.11. Let $B_1(0)$ be the unit ball in \mathbb{R}^{n+k} where $k \geq 1$. Then [exercise] $\mathcal{H}^n(B_1(0)) = +\infty$. So \mathcal{H}^n is not a Radon measure on \mathbb{R}^{n+k} . But a typical kind of example will be the following type of thing: let P be some *n*-dimensional subspace of \mathbb{R}^{n+k} . Then $\mathcal{H}^n \lfloor P$ is a Radon measure on \mathbb{R}^{n+k} .

Lemma 1.12. Let μ be a Borel regular measure on \mathbb{R}^n and let $A \subset \mathbb{R}^n$ be a μ -measurable set with $\mu(A) < \infty$. Then $\nu \coloneqq \mu \lfloor A$ is a Radon measure.

Proof. For any $C \subset \mathbb{R}^n$, $\nu(C) = \mu(C \cap A) \leq \mu(A) < \infty$. Now we need to check ν is Borel regular. Since μ is Borel regular, there exists Borel $B \supset A$ with $\mu(B) = \mu(A)$. We claim $\mu \lfloor A = \mu \lfloor B$. Given $C \subset \mathbb{R}^n$, $(\mu \lfloor B)(C) = \mu(B \cap C) = \mu(B \cap C \cap A^c) + \mu(B \cap C \cap A^c) \leq \mu(C \cap A) + \mu(B \cap A^c) = (\mu \lfloor A)(C) + \mu(B) - \mu(A) = (\mu \lfloor A)(C)$. And since $A \subset B$, we have $(\mu \lfloor A)(C) \leq (\mu \lfloor B)(C)$.

Now we will prove $\mu \lfloor B$ is Borel regular. Take $C \subset \mathbb{R}^n$. We know there exists Borel $E \supset B \cap C$ with $\mu(E) = \mu(B \cap C)$. So $E \cup B^c$ is Borel and contains C. Now $\nu(C) = \mu(C \cap B) \leq \mu(E \cap B) = \nu(E \cup B^c)$ and $\nu(E \cup B^c) = \mu(E \cap B) \leq \mu(E) = \mu(B \cap C) = \nu(C)$.

Lemma 1.13. Let μ be a Borel regular outer measure on \mathbb{R}^n . For any Borel set B with $\mu(B) < \infty$ and $\epsilon > 0$, there exists closed set $C \subset B$ with $\mu(B \setminus C) < \epsilon$.

Proof. Let $\mathcal{F} = \mathcal{F}_B$ be the collection of all μ -measurable sets A with the property that for any $\epsilon > 0$, there exists closed $C \subset A$ such that $(\mu \lfloor B)(A \setminus C) < \epsilon$. Let's check that \mathcal{F} is closed under countable unions and intersections. Suppose

 $(A_j)_{j=1}^{\infty} \subset \mathcal{F}$. For each j, pick closed $C_j \subset A_j$ with $(\mu \lfloor B)(A_j \setminus C_j) < \epsilon 2^{-j}$. Certainly $C \coloneqq \cap_{j=1}^{\infty} C_j$ is closed and $(\mu \lfloor B)(\cap_{j=1}^{\infty} A_j \setminus \cap_{j=1}^{\infty} C_j) \leq (\mu \lfloor B)(\cup_{j=1}^{\infty} (A_j \setminus C_j)) \leq \sum_{j=1}^{\infty} \epsilon 2^{-j} = \epsilon$. And

$$(\mu \lfloor B)(\bigcup_{j=1}^{\infty} A_j \setminus \bigcup_{j=1}^{\infty} C_j) \le (\mu \lfloor B)(\bigcup_{j=1}^{\infty} (A_j \setminus C_j)) \le \sum_{j=1}^{\infty} (\mu \lfloor B)(A_j \setminus C_j) \le \epsilon.$$

Since $\mu(B) < \infty$, we know from Theorem 1.5 that

$$(\mu \lfloor B) \left(\bigcup_{j=1}^{\infty} A_j \setminus \bigcup_{j=1}^{\infty} C_j \right) = \lim_{N \to \infty} (\mu \lfloor B) \left(\bigcup_{j=1}^{\infty} A_j \setminus \bigcup_{j=1}^{N} C_j \right).$$

So pick $m \ge 1$ such that $(\mu \lfloor B) \left(\bigcup_{j=1}^{\infty} A_j \setminus \bigcup_{j=1}^{m} C_j \right) \le 2\epsilon$.

Then let $\mathcal{G} = \{A \in \mathcal{F} : A^c \in \mathcal{F}\}$. You can check from the previous work that \mathcal{G} is a σ -algebra. It's clear that \mathcal{F} contains closed sets. Every open set is the countable union of closed sets, so \mathcal{F} also contains open sets. This means \mathcal{G} contains open sets, and therefore Borel sets, including B itself.

Lemma 1.14 (1.14). Let μ be a Radon measure \mathbb{R}^n . For any Borel set B and $\epsilon > 0$, there exists open set $U \supset B$ with $\mu(U \setminus B) < \epsilon$.

Proof. Let $B_j(0)$ be a ball of radius j centred at the origin. Since μ is Radon, we know that $\mu(B_j(0) \setminus B)$ is finite. By applying Lemma 1.13, there exists closed $C_j \subset B_j(0) \setminus B$ with $\mu(B_j(0) \setminus B \setminus C_j) < \epsilon/2^j$. Let $U = \bigcup_{j=1}^{\infty} (B_j(0) \setminus C_j)$. Now $B = \bigcup_{j=1}^{\infty} (B \cap B_j(0)) \subset \bigcup_{j=1}^{\infty} (B_j(0) \setminus C_j)$ [Remember that $C_j \subset B_j(0) \cap B^c$, so $B \cup B_j(0)^c \subset C_j^c$, which implies $B \cap B_j(0) \subset B_j(0) \cap C_j^c = B_j(0) \setminus C_j$.] And now

$$\mu(U \setminus B) = \mu\left(\bigcup_{j=1}^{\infty} (B_j(0) \setminus C_j) \setminus \bigcup_{j=1}^{\infty} (B_j(0) \cap B)\right) \le \sum_{j=1}^{\infty} \frac{\epsilon}{2^j} \le \epsilon.$$

Theorem 1.15 (Inner and Outer Regularity). Let μ be a Radon measure on \mathbb{R}^n .

(i) For any $A \subset \mathbb{R}^n$,

$$\mu(A) = \inf\{\mu(U) : U \text{ open}, U \supset A\};\$$

(ii) For μ -measurable $A \subset \mathbb{R}^n$,

$$\mu(A) = \sup\{\mu(K) : K \text{ compact}, K \subset A\}.$$

Proof. For (i), the \leq direction is immediate and if $\mu(A) = +\infty$, equality must hold. Since μ is Borel regular, there exists Borel $B \supset A$ with $\mu(B) = \mu(A)$. Then by Lemma 1.14, there exists open $U \supset B$ with $\mu(U \setminus B) < \epsilon$. So $\mu(U) < \mu(B) + \epsilon = \mu(A) + \epsilon$. Now take infimum over all such U.

For (ii), to begin with, we assume $\mu(A) < \infty$. In particular, $\mu \coloneqq \mu \lfloor A$ is Radon (by Lemma 1.12). By (i) there exists an open set $U \supset A^c$ with $\nu(U \setminus A^c) < \epsilon$. Of course, $U \setminus A^c = U \cap A = A \setminus U^c$, and U^c is a closed set with $U^c \subset A$. And we have that $\nu(A) < \nu(U^c) + \epsilon$. So $\mu(A) = \nu(A) < \nu(U^c) + \epsilon \leq \mu(U^c) + \epsilon$.

Now if $\mu(A) = +\infty$, set $D_j := B_j(0) \setminus B_{j-1}(0)$, so that A is the disjoint union $\bigcup_{j=1}^{\infty} (A \cap D_j)$. Since $\mu(A \cap D_j) < \infty$, apply previous work to get closed $C_j \subset A \cap D_j$ with $\mu((A \cap D_j) \setminus C_j) < \epsilon/2^j$. So now $\lim_{N \to \infty} \mu(\bigcup_{j=1}^N C_j) = \mu(\bigcup_{j=1}^{\infty} C_j) = \sum_{j=1}^{\infty} \mu(C_j) \ge \sum_{j=1}^{\infty} (\mu(A \cap D_j) - \epsilon 2^{-j}) \ge \mu(A) - \epsilon$. \Box

Definition 1.16. Let μ be an outer measure on \mathbb{R}^n . We say that $f : \mathbb{R}^n \to \mathbb{R}^k$ is μ -measurable if for every Borel set $B \subset \mathbb{R}^k$, the set $f^{-1}(B)$ is μ -measurable.

Theorem 1.17 (Lusin). Let μ be a Radon measure on \mathbb{R}^n , and let $f : \mathbb{R}^n \to \mathbb{R}^k$ be a μ -measurable function. Then for any μ -measurable $A \subset \mathbb{R}^n$ with finite measure and any $\epsilon > 0$ there exists a compact $K \subset A$ with $\mu(A \setminus K) < \epsilon$, and $f|_K$ continuous. [Remark: as $\epsilon \downarrow 0$, the set K becomes wilder and wilder.]

Proof. For each i = 1, 2, 3, ..., write \mathbb{R}^k as a disjoint union $\bigcup_{j=1}^{\infty} B_{ij}$ with B_{ij} Borel sets with diam $B_{ij} < 1/i$. (e.g. chop the codomain up into half-open cubes of width 1/i.) Then $f^{-1}(B_{ij})$ are disjoint and $A_{ij} = f^{-1}(B_{ij}) \cap A$ forms a partition of A into μ -measurable sets. Next, by inner regularity, let K_{ij} be compact sets with $K_{ij} \subset A_{ij}$ with $\mu(A_{ij}/K_{ij}) < \epsilon 2^{-i-j-1}$, so that $\mu(A \setminus \bigcup_{j=1}^{\infty} K_{ij}) < \epsilon 2^{-i-1}$. Pick N = N(i) with $\mu(A \setminus \bigcup_{j=1}^{N(i)} K_{ij}) < \epsilon 2^{-i}$. The set $K_i = \bigcup_{j=1}^{N(i)}$ is compact. Pick $b_{ij} \in B_{ij}$, and define $f_i \colon K_i \to \mathbb{R}^k$ by $f_i(x) = b_{ij} \mathbb{1}_{x \in K_{ij}, j \leq N(i)}$. Set $K = \bigcap_{i=1}^{\infty} K_i$. Then by construction

$$\sup_{x \in K} |f_i(x) - f(x)| < \frac{1}{i},$$

and $\mu(A \setminus K) \leq \epsilon$, and f is the uniform limit of the continuous functions f_i on K.

There is also *Egoroff's Theorem*:

Theorem 1.18 (Egoroff). Let μ be an outer measure on \mathbb{R}^n and let $A \subset \mathbb{R}^n$ be a μ -measurable subset with $\mu(A) < \infty$. Suppose $f_j : A \to \mathbb{R}^k$ is a sequence of μ -measurable functions converging pointwise μ -a.e. on A to the function $f : A \to \mathbb{R}^k$. Given any $\epsilon > 0$, there exists (μ -measurable?) $B \subset A$ with $\mu(A \setminus B) < \epsilon$ such that $f_j|_B$ converges uniformly to $f|_B$. [Apart from some ϵ , pointwise is just uniform??]

Proof. Write

$$E_{j,m} \coloneqq \{x \in A : \exists i > j, |f_i(x) - f(x)| > 1/m\}.$$

Notice the $E_{j,m}$ are decreasing sets in j, and on $\bigcap_{j=1}^{\infty} E_{j,m}$, f_j doesn't converge to f, so this set has zero measure by the assumption on pointwise convergence. Pick J = J(m) so that $E_{J,m}$ has measure $\epsilon 2^{-m}$. If x is not in $\bigcup_{m=1}^{\infty} E_{J,m}$, then $\forall m \geq 1$, such that $\forall i > J(m)$, $|f_i(x) - f(x)| \leq 1/m$. \Box

2 Covering Theorems

This is a very GMT section. We will talk about Besicovitch Covering Theorem, which is just a statement involving balls of \mathbb{R}^n with no mention on measures.

Theorem 2.1 (Besicovitch Covering Theorem). Let $n \ge 1$. Then there exists $N = N(n) \ge 1$ such that the following is true. Let $A \subset \mathbb{R}^n$ and let \mathcal{F} be a collection of balls in \mathbb{R}^n with centres in A for which every point of A is the centre of some ball in \mathcal{F} , and $D \coloneqq \sup_{B \in \mathcal{F}} \operatorname{diam} B < \infty$. Then there exists countable subcollections $\mathcal{G}_1, \dots, \mathcal{G}_N \subset \mathcal{F}$ each of which consists of pairwise disjoint balls and such that $A \subset \bigcup_{i=1}^N \bigcup \mathcal{G}_i$.

Remark. This says that $\mathcal{G} = \bigcup_{i=1}^{N} \mathcal{G}_i$ is a countable collection of balls from \mathcal{F} such that each point of A is contained in at most N(n) balls. More analytically, this implies

$$\sum_{B \in \mathcal{G}} \mathbb{1}_B(x) \le N \qquad \forall x \in \bigcup \mathcal{G}.$$

Assuming the theorem is true, we have

$$\mu(\bigcup_{j=1}^{\infty} B_j) \le \sum_{j=1}^{\infty} \mu(B_j) = \sum_{j=1}^{\infty} \int_{\bigcup_{j=1}^{\infty} B_j} \mathbb{1}_{B_j} \, \mathrm{d}\mu \le \int_{\bigcup_{j=1}^{\infty} B_j} \sum_{j=1}^{\infty} \mathbb{1}_{B_j} \, \mathrm{d}\mu \le N\mu(\bigcup_{j=1}^{\infty} B_j)$$

Proof. Let's assume A is bounded. We will construct a list $\{B_{r_j}(a_j)\}_{j=1}^J$, where possibly $J = +\infty$ and such that:

- (i) $j > i \implies r_i \ge \frac{3}{4}r_j$ [the radii do not grow too quickly];
- (ii) $\{B_{r_i/3}(a_j)\}_{j=1}^J$ is disjoint;
- (iii) $A \subset \bigcup_{j=1}^{J} B_{r_j}(a_j).$

Take $B_1 := B_{r_1}(a_1)$ with $a_1 \in A$ and $r_1 \geq \frac{3}{4} \frac{D}{2}$. If we have already found inductively $B_{r_1}(a_1), ..., B_{r_{j-1}}(a_{j-1})$, set $A_j := A \setminus \bigcup_{i=1}^{j-1} B_{r_i}(a_i)$ and pick $B_j = B_{r_j}(a_j)$ with $a_j \in A_j$ and $r_j \geq \frac{3}{4} \sup\{r : B_r(a) \in \mathcal{F}, a \in A_j\}$. If $A_j = \emptyset$, then J = j-1 and we stop.

Check (i): notice A_j is decreasing and so if j > i then $a_j \in A_i$ and $r_i \ge \frac{3}{4} \sup\{r : B_r(a) \in \mathcal{F}, a \in A_i\} \ge \frac{3}{4}r_j$.

Check (ii): For j > i, $|a_i - a_j| \ge r_i = \frac{1}{3}r_i + \frac{2}{3}r_i \ge \frac{1}{3}r_i + \frac{2}{3}\frac{3}{4}r_j > \frac{1}{3}r_i + \frac{1}{3}r_j$. Check (iii): If $J < \infty$, it's immediate. Otherwise, notice from (ii) we get that $r_i \to 0$ as $i \to \infty$. Now pick some $\bar{a} \in A$. Then there is $B_{\bar{r}}(\bar{a}) \in \mathcal{F}$. And eventually $r_i < \frac{3}{4}\bar{r}$ which implies that $\bar{r} > \sup\{r : B_s(r) \in \mathcal{F}, a \in A_i\}$ and so $\bar{a} \notin A_i$, i.e. $a \in \bigcup_{i'=1}^{i-1} B_{r_{i'}}(a_{i'})$.

Claim. Fix $k \in \{1, ..., J\}$. Write $I = I_k := \{j < k : B_j \cap B_k \neq \emptyset\}$. We claim there exists N = N(n) with $|I| \leq N$.

Let's see why the claim suffices. For i = 1, ..., N, let $\mathcal{G}_i^N = \{B_{r_i}(a_i)\}$. Having constructed \mathcal{G}_i^{ℓ} for i = 1, ..., N and $\ell \leq L$ such that each \mathcal{G}_i^{ℓ} is a disjoint collection of balls from $\{B_{r_j}(a_j)\}_{j=1}^J$, to construct \mathcal{G}_i^{L+1} , proceed as follows: since

$$|\{j < L+1 : B_{r_j}(a_j) \cap B_{r_{L+1}}(a_{L+1}) \neq \emptyset\}| < N,$$

there exists $i' \in \{1, ..., N\}$ such that $B \cap B_{r_{L+1}}(a_{L+1}) = \emptyset$ for all $B \in \mathcal{G}_{i'}^L$. So set

$$\mathcal{G}_{i'}^{L+1} = \mathcal{G}_i^L \cup \{B_{r_{L+1}}(a_{L+1})\} \quad \text{and} \quad \mathcal{G}_i^{L+1} = \mathcal{G}_i^L \quad \text{for } i \neq i'.$$

Then the collections $\mathcal{G}_i = \bigcup_{\ell=1}^{\infty} \mathcal{G}_i^L$ works as in the statement.

Proof of claim. Write $K := \{j \in I : r_j \leq 3r_k\}$. If $i \in K$ then $|a_i - a_k| < r_i + r_k$. So take $x \in B_{r_i/3}(a_i)$. We have: $|x - a_k| \leq |x - a_i| + |a_i - a_k| \leq \frac{1}{3}r_i + r_i + r_k \leq 5r_k$. So $B_{r_i/3}(a_i) \subset B_{5r_k}(a_k)$. Since k > i, $r_k \leq 4/3r_i$, so $3/4r_k \leq r_i$.

$$\sum_{i \in K} \left(\frac{r_k}{4}\right)^n \le \sum_{i \in K} \left(\frac{r_i}{3}\right)^n \le (5r_k)^n.$$

Cancel the the r_k^n to get $|K| \le 20^n$.

So we are left to bound $I \setminus K$. Pick $i, j \in I \setminus K$. Let $\theta \in [0, \pi]$ be the angle between $a_i - a_k$ and $a_j - a_k$.

Final claim. We claim there exists $\theta_0 = \theta_0(n) > 0$ such that $\theta \ge \theta_0$.

This suffices because there exists $r_0 \in (0, 1)$ such that if $x \in \partial B_1(0)$ and $y, z \in B_{r_0}(x)$, then angle between y and z is $< \theta_0$. And there is some constant L = L(n) such that $\partial B_1(0)$ can be covered by L balls of radius r_0 centred on $\partial B_1(0)$ but not L - 1 such balls. So by rescaling/translating, $\partial B_{r_k}(a_k)$ can be covered by L balls of radius $r_0 r_k$ centred on ∂B_k but not L - 1 such balls. So since the rays through a_i and a_j from a_k have angle bounded below by θ_0 , we will conclude $|I \setminus K| \leq L$.

Proof of final claim. Translate a_k to origin. We know that $3r_k < r_i < |a_i - 0| < r_i + r_k$, $3r_k < r_j < |a_j - 0| < r_j + r_k$ and we can WLOG $|a_i| \le |a_j|$. If $|a_i - a_j| \ge |a_j|$, then:

$$\cos \theta = \frac{|a_i|^2 + |a_j|^2 - |a_i - a_j|^2}{2|a_i||a_j|} \le \frac{1}{2} \frac{|a_i|}{|a_j|} \le \frac{1}{2}.$$

Now suppose $|a_i - a_j| \leq |a_j|$. We are also free to assume $\cos \theta > 5/6$. Then

$$\begin{split} &\frac{5}{6} < \frac{|a_i|^2 + |a_j|^2 - |a_i - a_j|^2}{2|a_i||a_j|} \\ &\leq \frac{1}{2} + \frac{(|a_j| - |a_i - a_j|)(|a_j| + |a_i - a_j|)}{2|a_i||a_j|} \\ &< \frac{1}{2} + \frac{|a_j| - |a_i - a_j|}{|a_i|} \\ &< \frac{1}{2} + \frac{r_j + r_k - |a_i - a_j|}{3r_k} \\ &= \frac{5}{6} + \frac{r_j - |a_i - a_j|}{3r_k}, \end{split}$$

so $|a_i - a_j| < r_j$. This tells us $a_i \in B_{r_j}(a_j)$. So we know that j > i, which means $r_i \leq |a_i - a_j|$ and we can deduce $r_j \leq \frac{4}{3}r_i$.

Now

$$\cos \theta = \frac{|a_i|^2 + |a_j|^2 - |a_i - a_j|^2}{2|a_i||a_j|}$$

= $\frac{(|a_i| - |a_j|)^2 - |a_i - a_j|^2}{2|a_i||a_j|} + 1$
= $\frac{(|a_i| - |a_j| - |a_i - a_j|)(|a_i| - |a_j| + |a_i - a_j|)}{2|a_i||a_j|} + 1$
= $1 - \frac{(-|a_i| + |a_j| + |a_i - a_j|)(|a_i| - |a_j| + |a_i - a_j|)}{2|a_i||a_j|}$

We can bound the second term: using $|a_i| > r_i$, $|a_j| < r_j + r_k$, $|a_i - a_j| > r_i$,

$$\begin{aligned} \frac{(-|a_i|+|a_j|+|a_i-a_j|)(|a_i|-|a_j|+|a_i-a_j|)}{2|a_i||a_j|} &\geq \frac{r_i[r_i-r_j-r_k+r_i]}{2(r_i+r_k)|a_j|} \\ &\geq \frac{r_i[\frac{1}{2}r_j-r_k]}{2(r_i+r_k)|a_j|} \\ &\geq \frac{r_i\frac{1}{6}r_j}{2(r_i+r_k)|a_j|} \\ &= \frac{1}{12}\frac{r_i}{r_i+r_k}\frac{r_j}{|a_j|}. \end{aligned}$$

Notice $r_i + r_k < \frac{4}{3}r_i$, and $|a_j| < r_j + r_k < \frac{4}{3}r_j$, so above $\geq \frac{1}{12}\frac{3}{4}\frac{3}{4} = \frac{3}{64}$. So $\theta > \arccos(\frac{61}{64}) =: \theta_0 > 0$.

Corollary 2.2. Let $A \subset \mathbb{R}^n$ and let μ be a Radon measure on \mathbb{R}^n with $\mu(A) < \infty$. Given an open set $U \subset \mathbb{R}^n$ and a collection \mathcal{F} of closed balls with $\inf_{B_r(a) \in \mathcal{F}} r = 0$, $\forall a \in A$, there exists countable disjoint subcollection $\mathcal{G} \subset \mathcal{F}$ with

- $\bigcup_{B \in \mathcal{G}} B \subset U;$
- $\mu((A \cap U) \setminus \bigcup_{B \in \mathcal{G}} B) = 0.$

Proof. Take $\mathcal{F}' := \{B_r(a) \in \mathcal{F} : a \in A \cap U, r \leq 1, B_r(a) \subset U\}$. Apply Besicovitch to get countable disjoint subcollections $\mathcal{G}_1, ..., \mathcal{G}_N$ with $A \cap U \subset \bigcup_{i=1}^N \bigcup_{B \in \mathcal{G}_i} B$. This implies that $\mu(A \cap U) \leq \sum_{i=1}^N \mu(A \cap U \cap \bigcup_{B \in \mathcal{G}_i} B)$. There exists $i_0 \in \{1, ..., N\}$ with $\mu(A \cap U \cap \bigcup_{B \in \mathcal{G}_{i_0}} B) \geq \frac{1}{N}\mu(A \cap U)$. Choose $\theta \in (0, \frac{1}{N})$. So there are disjoint balls $B_1, ..., B_{M_1} \in \mathcal{G}_{i_0}$ with $\mu(A \cap U \cap \bigcup_{j=1}^{M_1} B_j) > \theta\mu(A \cap U)$. This implies $\mu(A \cap U \setminus \bigcup_{j=1}^{M_1} B_j) < (1 - \theta)\mu(A \cap U)$. We can inductively repeat this process to get for each $\ell \geq 1$, a disjoint union of balls $\bigcap_{j=1}^{M_\ell} B_j$ with

$$\mu\left(A\cap U\setminus\bigcup_{j=1}^{M_{\ell}}B_{j}\right)<(1-\theta)^{\ell}\mu(A\cap U).$$

So in the end $\bigcup_{j=1}^{\infty} B_j$ works.

3 Densities and Differentiation of Radon Measures

Definition 3.1. Let μ, ν be Radon measures on \mathbb{R}^n . The *upper density* of ν with respect to ν is

$$\bar{D}_{\mu}\nu(x) \coloneqq \begin{cases} \limsup_{r \downarrow 0} \frac{\nu(\overline{B_r(x)})}{\mu(\overline{B_r(x)})} & \text{ if } \forall r > 0, \mu(\overline{B_r(x)}) > 0 \\ +\infty & \text{ if } \exists r > 0, \mu(\overline{B_r(x)}) = 0, \end{cases}$$

The *lower density* of ν with respect to μ is

$$\underline{D}_{\mu}\nu(x) \coloneqq \begin{cases} \liminf_{r \downarrow 0} \frac{\nu(\overline{B_r(x)})}{\mu(\overline{B_r(x)})} & \text{ if } \forall r > 0, \mu(\overline{B_r(x)}) > 0 \\ +\infty & \text{ if } \exists r > 0, \mu(\overline{B_r(x)}) = 0, \end{cases}$$

We say ν is differentiable with respect to μ at x if $\overline{D}_{\mu}\nu(x) = \underline{D}_{\mu}\nu(x)$.

Lemma 3.2. Let μ, ν be Radon measures on \mathbb{R}^n and let $\alpha \in (0, \infty)$. If

$$A \subset \{x \in \mathbb{R}^n : \underline{D}_{\mu}\nu(x) \le \alpha\},\$$

then $\nu(A) \leq \alpha \mu(A)$. And if

$$A \subset \{x \in \mathbb{R}^n : \bar{D}_\mu \nu(x) \ge \alpha\},\$$

then $\nu(A) \ge \alpha \mu(A)$.

Proof. We will prove the first statement in detail. By restricting to compact sets, we will assume μ and ν are finite. Fix $\epsilon > 0$ and an open set $U \supset A$. For each $a \in A$, there exists arbitrarily small radii r > 0 for which $\nu(\overline{B_r(a)}) < (\alpha + \epsilon)\mu(\overline{B_r(a)})$. So, we can consider

$$\mathcal{F} \coloneqq \{ \overline{B_r(a)} \subset U : a \in A, \nu(\overline{B_r(a)}) < (\alpha + \epsilon)\mu(\overline{B_r(a)}) \}.$$

By Corollary 2.2, there exists countable, disjoint subcollection $\mathcal{G} \subset \mathcal{F}$ with $\bigcup_{B \in \mathcal{G}} B \subset U$ and $\nu(A \setminus \bigcup_{B \in \mathcal{G}} B) = 0$. Now $\nu(A) = \nu(\bigcup_{B \in \mathcal{G}} B) = \sum_{B \in \mathcal{G}} \nu(B) \leq (a + \epsilon) \sum_{B \in \mathcal{G}} \mu(B) = (\alpha + \epsilon) \mu(\bigcup_{B \in \mathcal{G}} B) \leq (\alpha + \epsilon) \mu(U)$. By outer regularity and arbitrariness of ϵ , we are done.

Theorem 3.3. Let μ, ν be Radon measures on \mathbb{R}^n . Then $D_{\mu}\nu$:

- (i) exists μ -a.e.;
- (ii) is finite μ -a.e.;
- (iii) is μ -measurable.

Proof. Once again, assume μ and ν are finite. Write $I := \{x \in \mathbb{R}^n : \overline{D}_{\mu}\nu = +\infty\}$. Then for any $\alpha > 0$, we have $I \subset \{\overline{D}_{\mu}\nu \ge \alpha\}$, and so by Lemma 3.2, $\mu(I) \le \frac{1}{\alpha}\nu(I)$. Since $\nu(I) < \infty$, we deduce $\mu(I) = 0$.

For $a, b \in \mathbb{Q}$ with a < b, let $R_{a,b} \coloneqq \{\underline{D}_{\mu}\nu < a < b < \overline{D}_{\mu}\nu\}$. Now $\{D_{\mu}\nu \text{ does not exist}\} \subset \bigcup_{a < b, a, b \in \mathbb{Q}} R_{a,b}$, and from Lemma 3.2, we have

$$b\mu(R_{a,b}) \le \nu(R_{a,b}) \le a\mu(R_{a,b}).$$

But a < b, so we must have $\mu(R_{a,b}) = 0$. Observe now that $x \mapsto \mu(B_r(x))$ is Borel measurable for any fixed r > 0 and any Radon measure μ (this follows from the fact that it is upper semicontinuous). Then for fixed $k \in \mathbb{N}$,

$$x \mapsto \begin{cases} \frac{\nu(\overline{B_{1/k}(x)})}{\mu(\overline{B_{1/k}(x)})} & \text{if } \mu(\overline{B_{1/k}(x)}) > 0, \\ 0 & \text{otherwise} \end{cases}$$

is Borel measurable. Now it follows $D_{\mu}\nu$ is Borel measurable, just by taking \liminf , \limsup

Theorem 3.4 (Radon-Nikodym Derivatives). Let μ, ν be Radon measures on \mathbb{R}^n and suppose $\nu \ll \mu$. Then, for every μ -measurable set $A \subset \mathbb{R}^n$, we have:

$$\nu(A) = \int_A D_\mu \nu(x) \,\mathrm{d}\mu(x).$$

Recall that $\nu \ll \mu$ means ν is absolutely continuous with respect to μ , whose definition is $\mu(A) = 0 \implies \nu(A) = 0$ for all μ -measurable $A \subset \mathbb{R}^n$.

Proof. We claim the sets $I = \{D_{\mu}\nu = +\infty\}$, $Z = \{D_{\mu}\nu = 0\}$ and $U = \{\underline{D}_{\mu}\nu < \overline{D}_{\mu}\nu\}$ are all ν -null. $\mu(I) = \mu(U) = 0$ from Theorem 3.3, so by hypothesis, $\nu(I) = \nu(U) = 0$. And $\forall \epsilon > 0$, $Z \subset \{\underline{D}_{\mu}\nu \leq \epsilon\}$. So by the lemma, $\nu(Z) \leq \epsilon\mu(Z)$. Assuming for now that μ, ν are finite, we deduce $\nu(Z) = 0$. Fix μ -measurable $A \subset \mathbb{R}^n$. For $m \in \mathbb{Z}$ and t > 1, write $A_m := \{x \in A : t^m < D_{\mu}\nu(x) \leq t^{m+1}\}$. These are all μ -measurable. This implies ν -measurable: take Borel $B \supset A_m$ with $\mu(B) = \mu(A_m)$. Then $\mu(B \setminus A_m) = 0$. So $\nu(B \setminus A_m) = 0$. So $B \setminus A_m$ is ν -measurable. And $A_m = B \setminus (B \setminus A_m)$ so is ν -measurable. Now:

$$\int_{A} D_{\mu} \nu \, \mathrm{d}\mu = \sum_{m \in \mathbb{Z}} \int_{A_{m}} D_{\mu} \nu \, \mathrm{d}\mu + \int_{Z \cap A} D_{\mu} \nu \, \mathrm{d}\mu \le t^{m+1} \sum_{m \in \mathbb{Z}} \mu(A_{m})$$
$$< t \sum_{m \in \mathbb{Z}} \nu(A_{m}) = t\nu(\bigcup_{m \in \mathbb{Z}} A_{m}) = t\nu(A),$$

because $\nu(I \cup Z \cup U) = 0$. Also

$$t\nu(A) = t\sum_{m\in\mathbb{Z}}\nu(A_m) \le t^{m+2}\sum_{m\in\mathbb{Z}}\mu(A_m) \le t^2\sum_{m\in\mathbb{Z}}\int_{A_m}D_{\mu}\nu\,\mathrm{d}\mu = t^2\int_A D_{\mu}\nu\,\mathrm{d}\mu.$$

Now let $t \downarrow 1$ to complete.

Definition 3.5. We say two Radon measures μ, ν on \mathbb{R}^n are *mutually singular*, and write $\mu \perp \nu$, if there exists a Borel set $B \subset \mathbb{R}^n$ such that $\mu(B) = \nu(B^c) = 0$.

Theorem 3.6 (Lebesgue Decomposition). Let μ, ν be Radon measures on \mathbb{R}^n . There exists Radon measures ν_{ac} and ν_s with: (i) $\nu = \nu_{ac} + \nu_s$; (ii) $\nu_{ac} \ll \mu$; (iii) $\mu_s \perp \mu$; (iv) $D_{\mu}\nu = D_{\mu}\nu_{ac} \mu$ -a.e.; (v) $D_{\mu}\nu_s = 0 \mu$ -a.e. [So, by Theorem 3.4: $\nu(A) = \int_A D_{\mu}\nu \, d\mu + \nu_s(A)$ for all μ -measurable $A \subset \mathbb{R}^n$.]

Proof. Again assume μ, ν are finite. Let $\mathcal{E} = \{\text{Borel } B : \mu(B^c) = 0\}$. Let $\{B_k\}_{k=1}^{\infty} \in \mathcal{E}$ be such that $\nu(B_k) \leq \inf_{A \in \mathcal{E}} \nu(A) + \frac{1}{k}$. Then $B = \bigcap_{k=1}^{\infty} B_k$ is Borel, and $\mu(B^c) \leq \sum_{k=1}^{\infty} \mu(B_k^c) = 0$. And $\nu(B) = \inf_{A \in \mathcal{E}} \nu(A)$. So write $\nu \lfloor B^c =: \nu_s \text{ and } \nu_{ac} := \nu \lfloor B$. Clearly $\nu_s(B) = 0$.

We check (i)-(iii). Take μ -measurable C with $\mu(C) = 0$. Suppose (for contradiction) that $\nu_{ac}(C) = \nu(C \cap B) > 0$. Take Borel $S \supset B \setminus (C \cap B)$ with $\nu_{ac}(S) = \nu_{ac}(B \setminus (C \cap B)) < \nu(B)$. And $\mu((S \cap B)^c) \leq \mu(S^c) + \mu(B^c) \leq \mu(C) + 2\mu(B^c) = 0$. So we violate the fact that $\nu(B) = \inf_{A \in \mathcal{E}} \nu(A)$.

It is enough to show (v) as (iv) is equivalent. With $T := \{x \in B : D_{\mu}\nu_s \geq \alpha > 0\}$, we have $\nu_s(T) \leq \nu_s(B) = 0$ and $\mu(T) \leq \frac{1}{\alpha}\nu_s(T) = 0$. And since $\mu(B^c) = 0$, we deduce $D_{\mu}\nu_s = 0$ μ -a.e. Then by additivity of density with respect to μ (up to sets of μ -measure zero), we deduce (iv).

Theorem 3.7 (Lebesgue-Besicovitch Differentiation). Let μ be a Radon measure on \mathbb{R}^n . If $f \in L^1_{loc}(\mathbb{R}^n; \mu)$, then for μ -a.e. $x \in \mathbb{R}^n$ we have

$$\lim_{r \downarrow 0} \frac{1}{\mu(B_r(x))} \int_{B_r(x)} f(y) \, \mathrm{d}\mu(y) = f(x).$$

And for $p \in [1, \infty)$, if $f \in L^p_{loc}(\mathbb{R}^n; \mu)$, then for μ -a.e. $x \in \mathbb{R}^n$,

$$\lim_{r \downarrow 0} \frac{1}{\mu(B_r(x))} \int_{B_r(x)} |f(x) - f(y)|^p \,\mathrm{d}\mu(y) = 0.$$

Proof. Let f^{\pm} be positive and negative parts of f. For Borel $B \subset \mathbb{R}^n$, define $\nu^{\pm}(B) \coloneqq \int_B f^{\pm} d\mu$. And for general $A \subset \mathbb{R}^n$, define

$$\nu^{\pm}(A) \coloneqq \inf\{\nu^{\pm}(B) : B \text{ Borel}, B \supset A\}$$

One checks now that ν^{\pm} are Radon measures, absolutely continuous with respect to μ . So by Radon-Nikodym, for every Borel $B \subset \mathbb{R}^n$, we have $\nu^{\pm}(B) = \int_B f^{\pm} d\mu = \int_B D_{\mu} \nu^{\pm} d\mu$. We deduce that $D_{\mu} \nu^{\pm} = f^{\pm} \mu$ -a.e. Now, for μ -a.e. x,

$$\int_{B_r(x)} f(y) \, \mathrm{d}\mu(y) = \int_{B_r(x)} f^+(y) \, \mathrm{d}\mu(y) - \int_{B_r(x)} f^-(y) \, \mathrm{d}\mu(y)$$
$$= \nu^+(B_r(x)) - \nu^-(B_r(x)).$$

Divide both sides by $\mu(B_r(x))$ and send $r \downarrow 0$. Then

$$\lim_{r \downarrow 0} \frac{1}{\mu(B_r(x))} \int_{B_r(x)} f(y) \, \mathrm{d}\mu(y) = D_\mu \nu^+(x) - D_\mu \nu^-(x) = f^+(x) - f^-(x) = f(x).$$

Note: the lecturer mixed up closed balls and open balls, so replace all open balls with closed balls.

For the second part, let $\{r_j\}_{j=1}^{\infty}$ be dense subsets of \mathbb{R} and apply the first statement to $x \mapsto |f(x) - r_j|^p \in L^1_{loc}(\mathbb{R}^n, \mu)$ for each j. So now there exists a μ -null $A \subset \mathbb{R}^n$ such that if $x \notin A$ then for all j,

$$\lim_{r \downarrow 0} \frac{1}{\mu(B_r(x))} \int_{B_r(x)} |f(y) - r_j|^p \,\mathrm{d}\mu(y) = |f(x) - r_j|^p.$$

So pick r_j with $|r_j - f(x)| < \epsilon$. Using $|f(y) - f(x)|^p \le 2^p (|f(y) - r_j|^p + |f(x) - r_j|^p)$, and send $\epsilon \downarrow 0$.

Remark. With Lebesgue on \mathbb{R}^n , apply to $\mathbb{1}_E$ for Lebesgue measurable E. Then for almost every $x \in E$,

$$\lim_{r \downarrow 0} \frac{\operatorname{Leb}(B_r(x) \cap E^c)}{\operatorname{Leb}(B_r(x))} = 0.$$

4 Area and Co-area

Developing a rigorous notion of area in \mathbb{R}^n was one of the main driving forces for developing Geometric Measure Theory. For a few minutes I will treat you like Calculus 101 students.

Let D be the open disk in \mathbb{R}^2 . Then to evaluate $Area(D) = \int_{B_1(0)} dx \, dy$ we use change of variables. Let's use polar coordinates. There's this thing called rand θ , and we can integrate over $r \in (0, 1]$ and $\theta \in [0, 2\pi)$. But it's dangerous to show them a picture of a rectangle in the (r, θ) plane. It's confusing for some people. It's not the same as the area of the rectangle $\int_0^{2\pi} \int_0^1 dr \, d\theta$. At the heart of this example of course is some function $F(r, \theta) = (r \cos \theta, r \sin \theta)$. What's the area of F(rectangle)? We work out the Jacobian. This gives us $\int_0^{2\pi} \int_0^1 r \, dr \, d\theta$. We generalise this to F almost everywhere differentiable. We will focus on Fbeing Lipschitz.

Proposition 4.1. A continuous increasing function $f: [a, b] \to \mathbb{R}$ is differentiable almost everywhere.

Proof. With $\mathcal{F} = \{(c,d) : (c,d) \subset [a,b]\}$ and $\zeta((c,d)) = f(d) - f(c)$, let \mathscr{L}_f be the outer measure produced by Carathéodory's general construction. This is a Radon measure. So by decomposing \mathscr{L}_f with respect to \mathscr{L}^1 , we get an \mathscr{L}^1 -measurable function $g : [a,b] \to \mathbb{R}$, a Radon measure ν and a set $S \subset [a,b]$ such that $\nu([a,b] \setminus S) = 0$, $\mathscr{L}^1(S) = 0$ and such that for every \mathscr{L}^1 -measurable $A \subset [a,b]$, we have $\mathscr{L}_f(A) = \int_A g \, d\mathscr{L}^1 + \nu(A)$. Since f is continuous, we can check that $\mathscr{L}_f((c,d)) = f(d) - f(c)$. Now, look at

$$\begin{split} \left| \frac{f(x+h) - f(x)}{h} - g(x) \right| &= \left| \frac{\mathscr{L}_f((x,x+h))}{h} - g(x) \right| \\ &= \left| \frac{1}{h} \int_x^{x+h} g(y) \, \mathrm{d}\mathscr{L}^1(y) - g(x) + \frac{1}{h} \nu((x,x+h)) \right| \\ &\leq \frac{1}{h} \int_x^{x+h} |g(y) - g(x)| \, \mathrm{d}\mathscr{L}^1(y) + \frac{\nu((x,x+h))}{h} \\ &\leq 2\frac{1}{2h} \int_{x-h}^{x+h} |g(y) - g(x)| \, \mathrm{d}\mathscr{L}^1(y) + 2\frac{\nu([x-h,x+h])}{2h} \end{split}$$

As $h \downarrow 0$, this goes to zero for almost every x (first term by Lebesgue differentiation, second term because $D_{\mathscr{L}^1}\nu = 0 \mathscr{L}^1$ -a.e.

Remark. ν is the failure of the Fundamental Theorem of Calculus – it is called the *Cantor part of the derivative*. See the *Devil Staircase*.

Proposition 4.2. Let $f: [a, b] \to \mathbb{R}$ be Lipschitz. Then f is differentiable \mathscr{L}^1 -a.e., $f' \in L^\infty$, and $f(x) = f(a) + \int_a^x f'(t) dt$ for all $x \in [a, b]$.

Proof. Write

$$V_f(x) := \sup \left\{ \sum_{j=1}^n |f(x_j) - f(x_{j-1})| : a \le x_0 < x_1 < \dots < x_n \le x \right\}.$$

Notice $\sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| \leq \operatorname{Lip}(f)(b-a)$. This function is continuous and increasing [exercise]. And so is $V_f(x) - f(x)$, so that we can use this function to express f as the difference of two continuous, increasing functions. So by Proposition 4.1, f is differentiable \mathscr{L}^1 -a.e. Since $|f(x+h) - f(x)| \leq \operatorname{Lip}(f)|h|$, we get $||f'||_{L^{\infty}} \leq \operatorname{Lip}(f)$.

we get $||f'||_{L^{\infty}} \leq \operatorname{Lip}(f)$. Write $F(x) = \int_{a}^{x} f'(t) \, \mathrm{d}\mathscr{L}^{1}(t)$. So now:

$$\frac{1}{2h} \int_{x-h}^{x+h} f'(t) \, \mathrm{d}t = \frac{1}{2} \left(\frac{F(x+h) - F(x)}{h} + \frac{F(x) - F(x-h)}{h} \right).$$

Since F is Lipschitz, it is differentiable almost everywhere, and using Lebesgue differentiation on the left, we deduce, $f'(x) = F'(x) \mathscr{L}^1$ -a.e.

Now g = F - f is Lipschitz with $g' = 0 \mathscr{L}^1$ -a.e. [We want to conclude that g is constant, and we need to use the Lipschitz condition. This step is surprisingly hard. As far as the lecturer knows, we need to use a covering lemma.]

Let $E \subset (a, b)$ be the set with $\mathscr{L}^1((a, b) \setminus E) = 0$ and such that g is differentiable at each point of E with derivative zero. Fix $x \in (a, b)$ and $\epsilon > 0$. Using Corollary to Besicovitch, there exists a countable disjoint collection $[x_j - h_j, x_j + h_j] \subset (a, x)$ for j = 1, 2, ... with $|g(x_j + h_j) - g(x_j - h_j)| \leq 2h_j\epsilon$ and $\mathscr{L}^1\left(E \cap (a, x) \setminus \bigcup_{j=1}^{\infty} [x_j - h_j, x_j + h_j]\right) = 0$. Fix $N \geq 1$ such that $\mathscr{L}^1\left(E \cap (a, x) \setminus \bigcup_{j=1}^{N} [x_j - h_j, x_j + h_j]\right) < \epsilon$, and write the intervals in order. So now, since

$$|x_1 - h_1 - a| + \sum_{j=1}^{N-1} |(x_{j+1} - h_{j+1}) - (x_j + h_j)| + |x - (x_N + h_N)| \le \epsilon,$$

we know

$$|f(x_1-h_1)-f(a)| + \sum_{j=1}^{N-1} |g(x_{j+1}-h_{j+1})-g(x_j+h_j)| + |g(x)-g(x_N+h_N)| \le 2\operatorname{Lip}(f)\epsilon$$

So now,

$$|g(a) - g(x)| \le 2\operatorname{Lip}(f)\epsilon + \sum_{j=1}^{N} |g(x_j + h_j) - g(x_j - h_j)| \le 2\operatorname{Lip}(f)\epsilon + 2(b-a)\epsilon.$$

So since $\epsilon > 0$ was arbitrary, we can deduce g(x) = g(a) for all $x \in (a, b]$. \Box

Theorem 4.3 (Rademacher's Theorem). Let $f \colon \mathbb{R}^n \to \mathbb{R}$ be Lipschitz. Then f is differentiable \mathscr{L}^n -a.e.

Proof. For any $x \in \mathbb{R}^n$ and 'direction' $\omega \in S^{n-1} = \partial B_1(0)$, the function $t \mapsto f(x + t\omega)$ is a Lipschitz function on the line $\ell_{x,w} := \{x + t\omega : t \in \mathbb{R}\}$ and hence for \mathscr{L}^1 -a.e. $t \in \ell_{x,\omega}$, the derivative $\frac{d}{dt}f(x + t\omega)$ exists. So let A_ω denote the set of points $x \in \mathbb{R}^n$ at which the derivative $\frac{d}{dt}\Big|_{t=0}f(x + t\omega)$ exists. Then $A^c_\omega \cap \ell_{y,\omega}$ has \mathscr{L}^1 -measure zero for any $y \in \mathbb{R}^n$. So, by Fubini's Theorem, $\mathscr{L}^n(\mathbb{R}^n \setminus A_\omega) = 0$ for every $\omega \in \mathbb{R}^n$.

Next, we check that $D_{\omega}f(x) \coloneqq \frac{d}{dt}\Big|_{t=0}f(x+t\omega)$ is equal to $\sum_{j=1}^{n} \omega^{j} D_{j}f(x)$ a.e. Fix $\xi \in C_{c}^{\infty}(\mathbb{R}^{n})$ and consider

$$\int_{\mathbb{R}^n} \frac{f(x+t\omega) - f(x)}{t} \xi(x) \, \mathrm{d}x = -\int_{\mathbb{R}^n} \frac{\xi(x) - \xi(x-t\omega)}{t} f(x) \, \mathrm{d}x.$$

By Dominated Convergence Theorem,

$$\int_{\mathbb{R}^n} D_\omega f(x)\xi(x) \, \mathrm{d}x = -\int_{\mathbb{R}^n} \sum_{j=1}^n \omega^j D_j\xi(x)f(x) \, \mathrm{d}x$$
$$= \int_{\mathbb{R}^n} \sum_{j=1}^n \omega^j D_jf(x)\xi(x) \, \mathrm{d}x.$$

Since this holds for arbitrary $\xi \in C_c^{\infty}(\mathbb{R}^n)$, we have $D_{\omega}f(x) = \sum_{j=1}^n \omega^j D_j f(x)$ \mathscr{L}^n -a.e.

Finally, let $\omega_1, \omega_2, \dots$ be dense in S^{n-1} and write

$$Q(\omega,h)(x) \coloneqq \frac{f(x+h\omega) - f(x)}{h} - D_{\omega}f(x).$$

For each $k \in \mathbb{N}$, let A_k be the set of x for which $D_{\omega_k}f(x)$ exists, $D_1f(x), ..., D_nf(x)$ exists and $D_{\omega_k}f(x) = \sum_{j=1}^n \omega_k^j D_j f(x)$. Then let $A = \bigcap_{k=1}^\infty A_k$. We know that $\mathscr{L}^n(\mathbb{R}^n \setminus A) = 0$ and for each $x \in A$ and $k \in \mathbb{N}$, we have $Q(\omega_k, h)(x) \to 0$ as $h \to 0$.

Fix $x_0 \in A$ and $\epsilon > 0$. There exists K such that $S^{n-1} \subset \bigcup_{j=1}^K B_{\epsilon}(\omega_j)$, then let \bar{h} be such that $|h| < \bar{h} \implies \max_{j=1,\dots,K} |Q(\omega_j,h)(x_0)| < \epsilon$. And now $|Q(\omega,h)(x_0)| \le |Q(\omega,h)(x_0) - Q(\omega_i,h)(x_0)| + |Q(\omega_i,h)(x_0)|$, (where $|\omega - \omega_i| < \epsilon$), so that for $|h| < \bar{h}$,

$$\begin{aligned} |Q(\omega,h)(x_0)| &\leq \left| \frac{f(x+h\omega) - f(x+h\omega_i)}{h} \right| + \left| \sum_{j=1}^n \omega^j D_j \xi(x) f(x) \, \mathrm{d}x \right| + \epsilon \\ &\leq (2 \operatorname{Lip}(f) + 1)\epsilon. \end{aligned}$$

Think carefully as to why bound of this form suffices.

Area Formula

Given $f: \mathbb{R}^n \to \mathbb{R}^{n+k}$ Lipschitz, write Df_x for the linear map from $\mathbb{R}^n \to \mathbb{R}^{n+k}$ with matrix $(D_j f^i(x))_{i=1,\dots,n+k,j=1,\dots,n}$. And write

$$\mathcal{J}f(x) \coloneqq \sqrt{\det((Df_x)^* \circ Df_x)},$$

called the Jacobian matrix.

Theorem 4.4 (Area Formula). Let $A \subset \mathbb{R}^n$ be \mathscr{L}^n -measurable and let $f: A \to \mathbb{R}^{n+k}$ be Lipschitz. Then

• $\mathcal{H}^n(f(A)) = \int_A \mathcal{J}f(x) \, \mathrm{d}\mathscr{L}^n(x)$ if f is injective.

• In general

$$\int_{\mathbb{R}^{n+k}} \mathcal{H}^0(A \cap f^{-1}(y)) \, \mathrm{d}\mathcal{H}^n(y) = \int_A \mathcal{J}f(x) \, \mathrm{d}\mathscr{L}^n(x).$$

• And if $u \colon A \to \mathbb{R}$ is \mathscr{L}^n -integrable, we have

$$\int_{\mathbb{R}^{n+k}} \sum_{x \in f^{-1}(y)} u(x) \, \mathrm{d}\mathcal{H}^n(y) = \int_A u(x) \mathcal{J}f(x) \, \mathrm{d}\mathscr{L}^n(x).$$

Remark. (i) If $A \subset \mathbb{R}^n$ and $f: A \to \mathbb{R}$ Lipschitz, then

$$\bar{f}(x) \coloneqq \inf_{z \in A} [f(z) + \operatorname{Lip}(f)|x - z|]$$

is a Lipschitz function on \mathbb{R}^n with $\bar{f}|_A = f$ and $\operatorname{Lip}(\bar{f}|_A) = \operatorname{Lip}(f)$.

(ii) Notice that (for the purposes of proving the theorem), we can assume that f is differentiable on all of A.

To prove the first statement in the theorem, you approximate by linear functions.

Example. For $f: [0,1] \to \mathbb{R}^k$ Lipschitz, $\mathcal{J}f = |(\frac{d}{dt}f^1, ..., \frac{d}{dt}f^k)| = |\dot{f}(t)|$, so $\mathcal{H}^1(f([0,1])) = \int_0^1 |\dot{f}(t)| dt$ holds for injective parametrisation of a curve, cf Analyst's Travelling Salesman Problem.

Coarea Formula

Given $f: \mathbb{R}^{n+k} \to \mathbb{R}^n$ Lipschitz, write Df_x for the linear map from $\mathbb{R}^{n+k} \to \mathbb{R}^n$ with matrix $(D_j f^i(x))_{i=1,\dots,n,j=1,\dots,n+k}$. And write

$$\mathcal{J}f(x) \coloneqq \sqrt{\det(Df_x \circ (Df_x)^*)}.$$

Another Calculus 101 digression. Let $f: D \to [0, 1]$ be the function from the disk in \mathbb{R}^2 to \mathbb{R} by $f(x, y) = \sqrt{x^2 + y^2}$. If we have $t \in [0, 1]$, then $f^{-1}(\{t\})$ is a circle. For each level set, find the length of the circle then integrate over t:

$$\int_0^1 \mathcal{H}^1(f^{-1}(\{t\})) \,\mathrm{d}t = \int_0^1 2\pi t \,dt = \pi = \operatorname{Area}(D) = \int_D 1 \,\mathrm{d}\mathcal{H}^2.$$

Theorem 4.5 (Coarea Formula). Let $A \subset \mathbb{R}^{n+k}$ be \mathscr{L}^{n+k} -measurable and $f: A \to \mathbb{R}^n$ be Lipschitz. Then:

(i)
$$\int_{\mathbb{R}^n} \mathcal{H}^k(A \cap f^{-1}(y)) \, \mathrm{d}\mathcal{H}^n(y) = \int_A \mathcal{J}f(x) \, \mathrm{d}\mathscr{L}^{n+k}(x).$$

(ii) And if $u: A \to \mathbb{R}$ is \mathscr{L}^{n+k} -integrable,

$$\int_{\mathbb{R}^n} \left(\int_{f^{-1}(y)} u(x) \, \mathrm{d}\mathcal{H}^k(x) \right) \, \mathrm{d}\mathcal{H}^n(y) = \int_A u(x) \mathcal{J}f(x) \, \mathrm{d}\mathscr{L}^{n+k}(x).$$

Remark. For appropriate f, you will sometimes want to take $u = 1/\mathcal{J}f$. If n = 1, we have $\int_{\mathbb{R}} \int_{f^{-1}(y)} \frac{1}{|\nabla f|} d\mathcal{H}^k d\mathcal{H}^1 = \mathcal{L}^{n+1}(A)$.

5 Rectifiability and C^1 submanifolds

Theorem 5.1. If $f : \mathbb{R}^n \to \mathbb{R}$ is Lipschitz, then given $\epsilon > 0$ there exists C^1 function $g : \mathbb{R}^n \to \mathbb{R}$ with $\mathscr{L}^n(\{f(x) \neq g(x)\} \cup \{Df(x) \neq Dg(x)\}) < \epsilon$.

Theorem 5.2 (Whitney Extension — C^1 case). Let $A \subset \mathbb{R}^n$ be closed and let $f: A \to \mathbb{R}$ be a continuous function. Suppose $\nu: A \to \mathbb{R}^n$ is a continuous function for which

$$\lim_{\delta \downarrow 0} \sup_{\substack{x,y \in K \\ 0 < |x-y| < \delta}} \frac{f(y) - f(x) - \nu(x)(x-y)}{|x-y|} = 0$$

for all compact $K \subset A$. Then there exists a C^1 function $g \colon \mathbb{R}^n \to \mathbb{R}$ with $g|_A = f$ and $Dg|_A = \nu$.

Remark. If A has an interior, then the condition on ν implies that the derivative of f is already ν .

Proof. We will describe the *Whitney decomposition* of A^c . Define the kth dyadic mesh as

$$\mathscr{M}_k \coloneqq \left\{ \left[\frac{q_1}{2^k}, \frac{q_1+1}{2^k} \right] \times \ldots \times \left[\frac{q_n}{2^k}, \frac{q_n+1}{2^k} \right] \subset \mathbb{R}^n : q_1, \dots q_n \in \mathbb{Z} \right\}.$$

The key property is that if $Q, Q' \in \bigcup_{k \in \mathbb{Z}} \mathscr{M}_k$ and $\operatorname{int} Q \cap \operatorname{int} Q' \neq \emptyset$, then either $Q \subset Q'$ or $Q' \subset Q$. Then define kth layer from A as

$$\Omega_k := \left\{ x \in \mathbb{R}^n : (2\sqrt{n})2^{-k} < \operatorname{dist}(x, A) < (2\sqrt{n})2^{-k+1} \right\}.$$

Now set

$$\mathscr{F}_0 \coloneqq igcup_{k\in\mathbb{Z}} \left\{ Q\in\mathscr{M}_k: Q\cap\Omega_k
eq \emptyset
ight\}.$$

Notice that each cube $Q \in \mathscr{F}_0$ intersects at most 2 different dyadic layers. So if $Q, Q' \in \mathscr{F}_0$ are such that $\operatorname{int} Q \cap \operatorname{int} Q' \neq \emptyset$, then if $Q' \supset Q$, we have $\operatorname{diam}(Q') \leq 4 \operatorname{diam} Q$. So for each $Q \in \mathscr{F}_0$, $\{Q' \in \mathscr{F}_0 : Q' \supset Q\}$ is actually finite. So let \mathscr{F} be a subcollection of \mathscr{F}_0 which is maximal with respect to inclusions (i.e. for each cube $Q \in \mathscr{F}_0$, take biggest cube containing it). We see now that

(i) $\operatorname{int} Q \cap \operatorname{int} Q' = \emptyset$ for all $Q, Q' \in \mathscr{F}$;

(ii)
$$A^c = \bigcup_{Q \in \mathscr{F}} Q.$$

But much more is true. If $Q \in \mathscr{F} \cap \mathscr{M}_k$ then there is a point $x_0 \in Q \cap \Omega_k$ and this means $\operatorname{dist}(x_0, A) \leq (2\sqrt{n})2^{-k+1} = 4\operatorname{diam} Q$. So $\operatorname{dist}(Q, A) \leq 4\operatorname{diam} Q$. And, for any $a \in A, x \in Q$, we have

$$(2\sqrt{n})2^{-k} \le |x_0 - a| \le |x_0 - x| + |x - a| \le \operatorname{diam}(Q) + |x - a|,$$

so $|x - a| \ge \operatorname{diam}(Q)$, i.e. $\operatorname{diam} Q \le \operatorname{dist}(Q, A)$. So

$$\operatorname{diam}(Q) \le \operatorname{dist}(Q, A) \le 4 \operatorname{diam}(Q).$$

Next, if $Q, Q' \in \mathscr{F}$ are adjacent cubes $(Q \cap Q' \neq \emptyset)$, then diam $(Q) \leq \operatorname{dist}(Q, A) \leq \operatorname{dist}(Q', A) + \operatorname{diam}(Q') \leq 5 \operatorname{diam}(Q')$. In fact this means diam $(Q) \leq 4 \operatorname{diam}(Q')$.

A given cube $Q \in \mathcal{M}_k$ intersects 3^n cubes in \mathcal{M}_k , and each cube in \mathcal{M}_k determines 4^n cubes in \mathcal{M}_{k+2} . So at most 12^n cubes in \mathcal{F} intersect Q.

Now, if $Q, Q' \in \mathcal{F}$ are not adjacent, i.e. $Q \cap Q' = \emptyset$, then there is some other cube Q'' such that $\operatorname{dist}(\frac{9}{8}Q', Q) \ge e(Q'') - \frac{1}{8}e(Q') > 0$ where e is the edge length. So $\frac{9}{8}Q' \cap Q \neq \emptyset \implies Q' \cap Q \neq \emptyset$. So now for any $x_0 \in A^c$, $x_0 \in Q$ for some $Q \in \mathcal{F}$. And $|\{\frac{9}{8}Q': \frac{9}{8}Q' \ni x_0\}| \le |\{\frac{9}{8}Q': \frac{9}{8}Q' \cap Q \neq \emptyset\}| \le |\{\frac{9}{8}Q': Q' \cap Q \neq \emptyset\}| \le C(n)$. So $\{\frac{9}{8}Q': Q' \in \mathcal{F}\}$ has bounded overlap, in the sense that

$$\sum_{Q \in \mathcal{F}} \mathbf{1}_{\frac{9}{8}Q} \le C(n).$$

Now the next part we are going to be sketchy. Let Q_0 denote the unit cube at the origin. Let $\varphi \in C_c^{\infty}(\frac{9}{8}Q_0)$ with $\varphi \equiv 1$ on Q_0 , $0 \leq \varphi \leq 1$, and the derivatives are bounded by a constant that only depends on the dimension of the space and the power of the derivative, i.e. $|D^{\alpha}\varphi| \leq C(n, |\alpha|)$. Then set

$$\varphi_Q(x) \coloneqq \varphi\left(\frac{x - x_Q}{e(Q)}\right),$$

where x_Q is the centre of the cube Q. Then

$$\varphi_Q^* \coloneqq \frac{\varphi_Q}{\sum_{Q' \in \mathcal{F}} \varphi_{Q'}}$$

is a locally finite partition of unity (the sum is only ever a finite sum). For each cube $Q \in \mathcal{F}$ we also pick $p_Q \in A$ with $\operatorname{dist}(Q, A) = \operatorname{dist}(Q, p_Q)$. Finally, set, for $x \in A^c$,

$$g(x) = \sum_{Q \in \mathcal{F}} \varphi_Q^*(x) \big(f(p_Q) + \nu(p_Q)(x - p_Q) \big).$$

It is now quite a lot of checking to verify that this works.

Proof of Theorem 5.1. There exists $A_1 \subset \mathbb{R}^n$ such that $\mathscr{L}^n(\mathbb{R}^n \setminus A_1) = 0$ and f is differentiable on A_1 (Rademacher). By Lusin, there exists $A_2 \subset A_1$ such that $\mathscr{L}^n(A_1 \setminus A_2) < \epsilon/4$ and $Df|_{A_2}$ is continuous. For $k \in \mathbb{N}$, let

$$\eta_k(x) \coloneqq \sup_{y \in B_{1/k}(x) \setminus \{x\}} \frac{f(y) - f(x) - Df(x)(y-x)}{|x-y|}.$$

We know $\eta_k \to 0$ pointwise on A_2 . By Egoroff's Theorem $\exists A_3 \subset A_2$ with $\mathscr{L}^n(A_2 \setminus A_3) < \epsilon/4$ and such that $\eta_k \to 0$ locally uniformly on A_3 . And then by inner regularity, there exists a closed $A \subset A_3$ with $\mathscr{L}^n(A_3 \setminus A) < \epsilon/4$. Now apply Whitney extension on A with $\nu = Df$.

Definition. A set $M \subset \mathbb{R}^{n+k}$ is said to be *countably n-rectifiable* (or often just *n*-rectifiable or rectifiable) if $\mathcal{H}^n(M \cap K) < \infty$ for all compact $K \subset \mathbb{R}^{n+k}$ and $M \subset M_0 \cup \bigcup_{j=1}^{\infty} F_j(\mathbb{R}^n)$, where $\mathcal{H}^n(M_0) = 0$ and $F_j \colon \mathbb{R}^n \to \mathbb{R}^{n+k}$ are Lipschitz functions.

Exercise. If M is *n*-rectifiable then $M \subset M_0 \cup \bigcup_{j=1}^{\infty} N_j$, where $\mathcal{H}^{(M_0)} = 0$ and N_j are embedded *n*-dimensional C^1 -submanifolds of \mathbb{R}^{n+k} .

Definition. Let $M \subset \mathbb{R}^{n+k}$ be a set with the following property: $\forall y \in M, \exists$ open sets $\mathcal{U} \subset \mathbb{R}^{n+k}, V \subset \mathbb{R}^n$ and a C^1 map $\Psi: V \to U$ such that

- (i) $y \in \mathcal{U};$
- (ii) $\Psi(V) = M \cap \mathcal{U};$
- (iii) Ψ is injective;
- (iv) $D\Psi(x)$ is injective for every $x \in V$;
- (v) $\Psi^{-1}(K)$ is compact in V whenever K is compact in \mathcal{U} [properness].

Then we say that M is a (properly) embedded n-dimensional C^1 -submanifold of \mathbb{R}^{n+k} .

Remark. Notice if $A \subset \mathcal{U}$ is Borel, then $\mathcal{H}^n(A \cap M) = \int_{\Psi^{-1}(A)} \mathcal{J} \Psi \, \mathrm{d} \mathcal{H}^n$, by the area formula. And

$$\mathcal{J}\Psi = \det(D_i\Psi \cdot D_i\Psi)^{1/2}.$$

i.e. in the language of differential geometry, Riemannian volume on M is given by $\sqrt{\det g}$, where $g_{ij} = D_i \Psi \cdot D_j \Psi$ is the metric induced by coordinates given by $\Psi^{-1}|_{M \cap \mathcal{U}}$.

Definition. Let $(\mu_j)_{j=1}^{\infty}$ and μ be Radon measures on the metric space X. We say $\mu_j \to \mu$ in the sense of Radon measures if $\mu_j(f) \to \mu(f)$ for all $f \in C_c(X)$. [In probability, this is weak convergence of measures.] Space of Radon measures on X is $C_c(X)^*$ and so this is a w^* -convergence in the functional analysis sense.

Definition. We say that $M \subset \mathbb{R}^{n+k}$ has an approximate tangent plane P at $x_0 \in M$ if $\mathcal{H}^n \lfloor \eta_{x_0,\rho}(M) \to \mathcal{H}^n \lfloor P$ as $\rho \to 0$ in the sense of Radon measures, where $\eta_{x_0,\rho}(x) = \frac{x-x_0}{\rho}$.

Exercise. If M is *n*-rectifiable then it has an approximate tangent plane at \mathcal{H}^n -almost every point of M.

Theorem. Suppose $M \subset \mathbb{R}^{n+k}$ has $\mathcal{H}^n(M \cap K) < \infty$ for all compact $K \subset \mathbb{R}^{n+k}$. If M has an approximate tangent plane at \mathcal{H}^n -a.e. point of M, then it is *n*-rectifiable. By taking $f \in C_c(\mathbb{R}^{n+k})$ with $0 \leq f \leq 1$, $f \equiv 0$ on $B_{1+\epsilon}(0)^c$ and $f \equiv 1$ on $B_1(0)$, we have

$$\frac{\mathcal{H}^n(M \cap B_\rho(x_0))}{\omega_n \rho^n} = \omega_n^{-1} \mathcal{H}^n(\eta_{x_0,\rho}(M) \cap B_1(0)) = \omega_n^{-1} \int_{\eta_{x_0,\rho}(M)} f \, \mathrm{d}\mathcal{H}^n + O(\epsilon),$$

and so if M has approximate tangent plane at x_0 , then $\lim_{\rho \downarrow 0} \frac{\mathcal{H}^n(M \cap B_\rho(x_0))}{\omega_n \rho^n} = 1$. This is the start of a very long story.