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1 Measure Theory III Intro to GMT

1 Measure Theory

Carathéodory’s Construction

Definition 1.1. Let X be a set. An outer measure on X is a function µ : 2X →
[0,+∞] such that (i) µ(∅) = 0, (ii) (subadditivity) µ(B) ≤

∑∞
j=1Aj whenever

B ⊂ ∪∞j=1Aj .

We ’ll describe a general method for building outer measures on a metric
space (X, d). Fix F ⊂ 2X and a function ζ : F → [0,+∞]. For A ⊂ X and
δ > 0, define

Cδ(A) = {{Sj}j∈J : A ⊂ ∪j∈JSj , J countable,diamSj < δ, ∀j}

The diameter is diamSj = supx,y∈Sj d(x, y). Then for δ > 0, define

µδ(A) = inf

∑
j∈J

ζ(Sj) : (Sj)j∈J ∈ Cδ

 .

If 0 < δ1 < δ2 ≤ ∞, then µδ2(A) ≤ µδ1(A). This means µ(A) = limδ↓0 µδ(A) =
supδ>0 µδ(A) exists. [Exercise: both µδ and µ are outer measures.]

Example 1.2. Lebesgue Outer Measure. Let F be all boxes in Rn. Let
B =

∏n
i=1 Ii where Ii = [ai, bi] are intervals and ζ(B) =

∏n
i=1(bi − ai).

s-dimensional Hausdorff measure. In Rn, s > 0, take F = 2Rn and
ζ(A) = ωs(diamA/2)s, where ωs is a normalising constant. We pick ωs so that
if, for example s = n, then Hn = L n, i.e. we need Hn-measure of a ball of
radius 1 to be πn/2Γ(n/2 + 1)−1, where Γ(q) =

∫∞
0
tq−1 exp(−t) dt. You get the

same measure if you take F to be all closed sets or all open sets [exercise].

Definition 1.3. Let µ be an outer measure on a set X. We say A ⊂ X is
µ-measurable if

µ(C) = µ(C ∩A) + µ(C ∩Ac) ∀C ⊂ X.

To remember whehther A or C is the test set, remember that we want to define
measurable sets A to have nice boundaries.

Remark 1.4. Note that A measurable iff Ac measurable. From subadditivity,
we always have ≤. So we just need to check

µ(C) ≥ µ(C ∩A) + µ(C ∩Ac) ∀C ⊂ X.

Theorem 1.5. Let µ be an outer measure on X and (Aj)
∞
j=1 be µ-measurable

sets. Then

(i)
⋃∞
j=1Aj and

⋂∞
j=1Aj are measurable;

(ii) If (Aj)
∞
j=1 are disjoint, then µ(

⋃∞
j=1Aj) =

∑∞
j=1Aj .

(iii) If A1 ⊂ A2 ⊂ ... is an increasing sequence of sets, then limj→∞ µ(Aj) =
µ(
⋃∞
j=1Aj).
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(iv) If A1 ⊃ A2 ⊃ ... is a decreasing sequence of sets with µ(A1) < ∞, then
limj→∞ µ(Aj) = µ(

⋃∞
j=1Aj).

Proof. (i) We first show that measurability is closed under finite unions and
intersections. For any C ⊂ X,

µ(C) = µ(C ∩A1) + µ(C ∩Ac1)

= µ(C ∩A1) + µ(C ∩Ac1 ∩A2) + µ(C ∩Ac1 ∩Ac2)

≥ µ(C ∩ (A1 ∪A2)) + µ(C ∩ (A1 ∪A2)c),

because A1∪A2 ⊂ A1∪ (Ac1∩A2) and Ac1∩Ac2 = (A1∪A2)c. By induction,
measurability is closed under finite unions and intersections.

(ii) If (Aj)
∞
j=1 is disjoint, then set BN =

⋃N
j=1Aj . Then

µ(BN+1) = µ(BN+1 ∩AN+1) + µ(BN+1 ∩AcN+1) = µ(AN+1) + µ(BN ).

By induction, µ(
⋃N
j=1Aj) =

∑N
j=1 µ(Aj). By subadditivity,

∑N
j=1 µ(Aj) =

µ(
⋃N
j=1Aj) ≤ µ(

⋃∞
j=1Aj). Take N →∞ to one inequality. Use subaddi-

tivity to obtain the other inequality.

(iii) If Aj are increasing, then write their union as disjoint annuli:

µ

 ∞⋃
j=1

Aj

 = µ

A1 ∪
∞⋃
j=1

(Aj+1 \Aj)


= µ(A1) +

∞∑
j=1

µ(Aj+1 \Aj)

= lim
N→∞

µ(AN+1).

(iv) If Aj are decreasing, then µ(A1) ≤ µ(
⋂∞
j=1Aj) + µ(A1 \

⋂∞
j=1Aj). So

µ(A1)− µ

 ∞⋂
j=1

Aj

 ≤ µ
A1 \

∞⋂
j=1

Aj


= µ

 ∞⋃
j=1

(A1 \Aj)


= lim
N→∞

µ(A1 \AN )

= µ(A1)− lim
N→∞

µ(AN ).

Since µ(A1) <∞, we can cancel it from both sides.

(v) We go back to showing (i) for countable unions and intersections. Take
C ⊂ X. If µ(C) =∞ then we automatically have µ(C) ≥ µ(C∩

⋃∞
j=1Aj)+

µ(C∩(
⋃∞
j=1Aj)

c). So WLOG µ(C) <∞. Consider the outer measure µbC
given by (µbC)(B) = µ(C ∩B). Easy to see all Aj are (µbC)-measurable.

Now µ(C ∩
⋃∞
j=1Aj) = limN→∞(µbC)(

⋃N
j=1Aj) and µ(C ∩ (

⋃∞
j=1Aj)

c) =
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limN→∞(µbC)((
⋃N
j=1Aj)

c). The proof is completed by adding these lines
together and using the fact that the finite union is (µbC)-measurable.

Definition 1.6. An outer measure µ on X is said to be regular if for every
C ⊂ X there exists a µ-measurable set A ⊃ C with µ(A) = µ(C).

Definition 1.7. An outer measure µ on a topological space X is said to be
Borel if every Borel set is µ-measurable; and is said to be Borel regular if it is
Borel and for every C ⊂ X there exists a Borel set A ⊃ C with µ(A) = µ(C).
Note being Borel regular is not the same as being Borel and regular.

Proposition 1.8. Let µ be a regular outer measure on X. If A1 ⊂ A2 ⊂ ... ⊂ X,
then limj→∞ µ(Aj) = µ(∪∞j=1Aj).

Remark 1.9. The Aj need not be µ-measurable.

Proof. For each j, pick measurable A′j ⊃ Aj with µ(A′j) = µ(Aj). Then set
BN = ∪∞j=NA′j . Notice AN ⊂ BN . And then notice µ(AN ) ≤ µ(BN ) ≤ µ(A′N ) =
µ(AN ). Therefore

µ

 ∞⋃
j=1

Aj

 ≤ µ
 ∞⋃
j=1

Bj

 = lim
j→∞

µ(Bj) = lim
j→∞

µ(Aj).

Definition 1.10. An outer measure µ on Rn is said to be a Radon measure if
it is Borel regular and µ(K) <∞ for all compact K ⊂ Rn.

Example 1.11. Let B1(0) be the unit ball in Rn+k where k ≥ 1.Then [exercise]
Hn(B1(0)) = +∞. So Hn is not a Radon measure on Rn+k. But a typical kind
of example will be the following type of thing: let P be some n-dimensional
subspace of Rn+k. Then HnbP is a Radon measure on Rn+k.

Lemma 1.12. Let µ be a Borel regular measure on Rn and let A ⊂ Rn be a
µ-measurable set with µ(A) <∞. Then ν := µbA is a Radon measure.

Proof. For any C ⊂ Rn, ν(C) = µ(C ∩A) ≤ µ(A) <∞. Now we need to check
ν is Borel regular. Since µ is Borel regular, there exists Borel B ⊃ A with
µ(B) = µ(A). We claim µbA = µbB. Given C ⊂ Rn, (µbB)(C) = µ(B ∩ C) =
µ(B∩C∩A)+µ(B∩C∩Ac) ≤ µ(C∩A)+µ(B∩Ac) = (µbA)(C)+µ(B)−µ(A) =
(µbA)(C). And since A ⊂ B, we have (µbA)(C) ≤ (µbB)(C).

Now we will prove µbB is Borel regular. Take C ⊂ Rn. We know there exists
Borel E ⊃ B ∩ C with µ(E) = µ(B ∩ C). So E ∪ Bc is Borel and contains C.
Now ν(C) = µ(C ∩B) ≤ µ(E ∩B) = ν(E ∪Bc) and ν(E ∪Bc) = µ(E ∩B) ≤
µ(E) = µ(B ∩ C) = ν(C).

Lemma 1.13. Let µ be a Borel regular outer measure on Rn. For any Borel set
B with µ(B) <∞ and ε > 0, there exists closed set C ⊂ B with µ(B \ C) < ε.

Proof. Let F = FB be the collection of all µ-measurable sets A with the property
that for any ε > 0, there exists closed C ⊂ A such that (µbB)(A \ C) < ε. Let’s
check that F is closed under countable unions and intersections. Suppose
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(Aj)
∞
j=1 ⊂ F . For each j, pick closed Cj ⊂ Aj with (µbB)(Aj \ Cj) < ε2−j .

Certainly C := ∩∞j=1Cj is closed and (µbB)(∩∞j=1Aj\∩∞j=1Cj) ≤ (µbB)(∪∞j=1(Aj\
Cj)) ≤

∑∞
j=1(µbB)(Aj \ Cj) ≤

∑∞
j=1 ε2

−j = ε. And

(µbB)(

∞⋃
j=1

Aj \ ∪∞j=1Cj) ≤ (µbB)(

∞⋃
j=1

(Aj \ Cj)) ≤
∞∑
j=1

(µbB)(Aj \ Cj) ≤ ε.

Since µ(B) <∞, we know from Theorem 1.5 that

(µbB)

 ∞⋃
j=1

Aj \
∞⋃
j=1

Cj

 = lim
N→∞

(µbB)

 ∞⋃
j=1

Aj \
N⋃
j=1

Cj

 .

So pick m ≥ 1 such that (µbB)
(⋃∞

j=1Aj \
⋃m
j=1 Cj

)
≤ 2ε.

Then let G = {A ∈ F : Ac ∈ F}. You can check from the previous work
that G is a σ-algebra. It’s clear that F contains closed sets. Every open set is
the countable union of closed sets, so F also contains open sets. This means G
contains open sets, and therefore Borel sets, including B itself.

Lemma 1.14 (1.14). Let µ be a Radon measure Rn. For any Borel set B and
ε > 0, there exists open set U ⊃ B with µ(U \B) < ε.

Proof. Let Bj(0) be a ball of radius j centred at the origin. Since µ is Radon,
we know that µ(Bj(0)\B) is finite. By applying Lemma 1.13, there exists closed
Cj ⊂ Bj(0) \B with µ(Bj(0) \B \Cj) < ε/2j . Let U =

⋃∞
j=1(Bj(0) \Cj). Now

B =
⋃∞
j=1(B ∩Bj(0)) ⊂ ∪∞j=1(Bj(0) \Cj) [Remember that Cj ⊂ Bj(0) ∩Bc, so

B ∪Bj(0)c ⊂ Ccj , which implies B ∩Bj(0) ⊂ Bj(0)∩Ccj = Bj(0) \Cj .] And now

µ(U \B) = µ

 ∞⋃
j=1

(Bj(0) \ Cj) \
∞⋃
j=1

(Bj(0) ∩B)

 ≤ ∞∑
j=1

ε

2j
≤ ε.

Theorem 1.15 (Inner and Outer Regularity). Let µ be a Radon measure on
Rn.

(i) For any A ⊂ Rn,

µ(A) = inf{µ(U) : U open, U ⊃ A};

(ii) For µ-measurable A ⊂ Rn,

µ(A) = sup{µ(K) : K compact,K ⊂ A}.

Proof. For (i), the ≤ direction is immediate and if µ(A) = +∞, equality must
hold. Since µ is Borel regular, there exists Borel B ⊃ A with µ(B) = µ(A).
Then by Lemma 1.14, there exists open U ⊃ B with µ(U \B) < ε. So µ(U) <
µ(B) + ε = µ(A) + ε. Now take infimum over all such U .

For (ii), to begin with, we assume µ(A) <∞. In particular, µ := µbA is Radon
(by Lemma 1.12). By (i) there exists an open set U ⊃ Ac with ν(U \ Ac) < ε.
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Of course, U \Ac = U ∩A = A \ U c, and U c is a closed set with U c ⊂ A. And
we have that ν(A) < ν(U c) + ε. So µ(A) = ν(A) < ν(U c) + ε ≤ µ(U c) + ε.

Now if µ(A) = +∞, set Dj := Bj(0) \ Bj−1(0), so that A is the disjoint
union

⋃∞
j=1(A ∩Dj). Since µ(A ∩Dj) <∞, apply previous work to get closed

Cj ⊂ A ∩ Dj with µ((A ∩ Dj) \ Cj) < ε/2j . So now limN→∞ µ(
⋃N
j=1 Cj) =

µ(
⋃∞
j=1 Cj) =

∑∞
j=1 µ(Cj) ≥

∑∞
j=1(µ(A ∩Dj)− ε2−j) ≥ µ(A)− ε.

Definition 1.16. Let µ be an outer measure on Rn. We say that f : Rn → Rk
is µ-measurable if for every Borel set B ⊂ Rk, the set f−1(B) is µ-measurable.

Theorem 1.17 (Lusin). Let µ be a Radon measure on Rn, and let f : Rn → Rk
be a µ-measurable function. Then for any µ-measurable A ⊂ Rn with finite
measure and any ε > 0 there exists a compact K ⊂ A with µ(A \K) < ε, and
f |K continuous. [Remark: as ε ↓ 0, the set K becomes wilder and wilder.]

Proof. For each i = 1, 2, 3, ..., write Rk as a disjoint union
⋃∞
j=1Bij with Bij

Borel sets with diamBij < 1/i. (e.g. chop the codomain up into half-open
cubes of width 1/i.) Then f−1(Bij) are disjoint and Aij = f−1(Bij) ∩ A
forms a partition of A into µ-measurable sets. Next, by inner regularity, let
Kij be compact sets with Kij ⊂ Aij with µ(Aij/Kij) < ε2−i−j−1, so that

µ(A \
⋃∞
j=1Kij) < ε2−i−1. Pick N = N(i) with µ(A \

⋃N(i)
j=1 Kij) < ε2−i.

The set Ki =
⋃N(i)
j=1 is compact. Pick bij ∈ Bij , and define fi : Ki → Rk by

fi(x) = bij1x∈Kij ,j≤N(i). Set K =
⋂∞
i=1Ki. Then by construction

sup
x∈K
|fi(x)− f(x)| < 1

i
,

and µ(A \K) ≤ ε, and f is the uniform limit of the continuous functions fi on
K.

There is also Egoroff’s Theorem:

Theorem 1.18 (Egoroff). Let µ be an outer measure on Rn and let A ⊂ Rn
be a µ-measurable subset with µ(A) <∞. Suppose fj : A→ Rk is a sequence
of µ-measurable functions converging pointwise µ-a.e. on A to the function
f : A → Rk. Given any ε > 0, there exists (µ-measurable?) B ⊂ A with
µ(A \ B) < ε such that fj |B converges uniformly to f |B. [Apart from some ε,
pointwise is just uniform??]

Proof. Write

Ej,m := {x ∈ A : ∃i > j, |fi(x)− f(x)| > 1/m}.

Notice the Ej,m are decreasing sets in j, and on
⋂∞
j=1Ej,m, fj doesn’t converge

to f , so this set has zero measure by the assumption on pointwise convergence.
Pick J = J(m) so that EJ,m has measure ε2−m. If x is not in

⋃∞
m=1EJ,m, then

∀m ≥ 1, such that ∀i > J(m), |fi(x)− f(x)| ≤ 1/m.
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2 Covering Theorems

This is a very GMT section. We will talk about Besicovitch Covering Theorem,
which is just a statement involving balls of Rn with no mention on measures.

Theorem 2.1 (Besicovitch Covering Theorem). Let n ≥ 1. Then there exists
N = N(n) ≥ 1 such that the following is true. Let A ⊂ Rn and let F be a
collection of balls in Rn with centres in A for which every point of A is the centre
of some ball in F , and D := supB∈F diamB <∞. Then there exists countable
subcollections G1, ...,GN ⊂ F each of which consists of pairwise disjoint balls
and such that A ⊂

⋃N
i=1

⋃
Gi.

Remark. This says that G =
⋃N
i=1 Gi is a countable collection of balls from F

such that each point of A is contained in at most N(n) balls. More analytically,
this implies ∑

B∈G
1B(x) ≤ N ∀x ∈

⋃
G.

Assuming the theorem is true, we have

µ(

∞⋃
j=1

Bj) ≤
∞∑
j=1

µ(Bj) =

∞∑
j=1

∫
⋃∞
j=1 Bj

1Bj dµ ≤
∫
⋃∞
j=1 Bj

∞∑
j=1

1Bj dµ ≤ Nµ(

∞⋃
j=1

Bj).

Proof. Let’s assume A is bounded. We will construct a list {Brj (aj)}Jj=1, where
possibly J = +∞ and such that:

(i) j > i =⇒ ri ≥ 3
4rj [the radii do not grow too quickly];

(ii) {Brj/3(aj)}Jj=1 is disjoint;

(iii) A ⊂
⋃J
j=1Brj (aj).

Take B1 := Br1(a1) with a1 ∈ A and r1 ≥ 3
4
D
2 . If we have already found

inductively Br1(a1), ..., Brj−1(aj−1), set Aj := A \
⋃j−1
i=1 Bri(ai) and pick Bj =

Brj (aj) with aj ∈ Aj and rj ≥ 3
4 sup{r : Br(a) ∈ F , a ∈ Aj}. If Aj = ∅, then

J = j − 1 and we stop.
Check (i): notice Aj is decreasing and so if j > i then aj ∈ Ai and ri ≥

3
4 sup{r : Br(a) ∈ F , a ∈ Ai} ≥ 3

4rj .
Check (ii): For j > i, |ai − aj | ≥ ri = 1

3ri + 2
3ri ≥

1
3ri + 2

3
3
4rj >

1
3ri + 1

3rj .
Check (iii): If J < ∞, it’s immediate. Otherwise, notice from (ii) we get

that ri → 0 as i → ∞. Now pick some ā ∈ A. Then there is Br̄(ā) ∈ F . And
eventually ri <

3
4 r̄ which implies that r̄ > sup{r : Bs(r) ∈ F , a ∈ Ai} and so

ā /∈ Ai, i.e. a ∈
⋃i−1
i′=1Bri′ (ai′).

Claim. Fix k ∈ {1, ..., J}. Write I = Ik := {j < k : Bj ∩ Bk 6= ∅}. We claim
there exists N = N(n) with |I| ≤ N .

Let’s see why the claim suffices. For i = 1, ..., N , let GNi = {Bri(ai)}. Having
constructed G`i for i = 1, ..., N and ` ≤ L such that each G`i is a disjoint collection
of balls from {Brj (aj)}Jj=1, to construct GL+1

i , proceed as follows: since

|{j < L+ 1 : Brj (aj) ∩BrL+1
(aL+1) 6= ∅}| < N,

8



2 Covering Theorems III Intro to GMT

there exists i′ ∈ {1, ..., N} such that B ∩BrL+1
(aL+1) = ∅ for all B ∈ GLi′ . So set

GL+1
i′ = GLi ∪ {BrL+1

(aL+1)} and GL+1
i = GLi for i 6= i′.

Then the collections Gi =
⋃∞
`=1 GLi works as in the statement.

Proof of claim. Write K := {j ∈ I : rj ≤ 3rk}. If i ∈ K then |ai−ak| < ri+rk.
So take x ∈ Bri/3(ai). We have: |x−ak| ≤ |x−ai|+|ai−ak| ≤ 1

3ri+ri+rk ≤ 5rk.
So Bri/3(ai) ⊂ B5rk(ak). Since k > i, rk ≤ 4/3ri, so 3/4rk ≤ ri.∑

i∈K

(rk
4

)n
≤
∑
i∈K

(ri
3

)n
≤ (5rk)n.

Cancel the the rnk to get |K| ≤ 20n.
So we are left to bound I \K. Pick i, j ∈ I \K. Let θ ∈ [0, π] be the angle

between ai − ak and aj − ak.
Final claim. We claim there exists θ0 = θ0(n) > 0 such that θ ≥ θ0.
This suffices because there exists r0 ∈ (0, 1) such that if x ∈ ∂B1(0) and

y, z ∈ Br0(x), then angle between y and z is < θ0. And there is some constant
L = L(n) such that ∂B1(0) can be covered by L balls of radius r0 centred on
∂B1(0) but not L− 1 such balls. So by rescaling/translating, ∂Brk(ak) can be
covered by L balls of radius r0rk centred on ∂Bk but not L− 1 such balls. So
since the rays through ai and aj from ak have angle bounded below by θ0, we
will conclude |I \K| ≤ L.

Proof of final claim. Translate ak to origin. We know that 3rk < ri <
|ai − 0| < ri + rk, 3rk < rj < |aj − 0| < rj + rk and we can WLOG |ai| ≤ |aj |.
If |ai − aj | ≥ |aj |, then:

cos θ =
|ai|2 + |aj |2 − |ai − aj |2

2|ai||aj |
≤ 1

2

|ai|
|aj |
≤ 1

2
.

Now suppose |ai − aj | ≤ |aj |. We are also free to assume cos θ > 5/6. Then

5

6
<
|ai|2 + |aj |2 − |ai − aj |2

2|ai||aj |

≤ 1

2
+

(|aj | − |ai − aj |)(|aj |+ |ai − aj |)
2|ai||aj |

<
1

2
+
|aj | − |ai − aj |

|ai|

<
1

2
+
rj + rk − |ai − aj |

3rk

=
5

6
+
rj − |ai − aj |

3rk
,

so |ai−aj | < rj . This tells us ai ∈ Brj (aj). So we know that j > i, which means
ri ≤ |ai − aj | and we can deduce rj ≤ 4

3ri.

9
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Now

cos θ =
|ai|2 + |aj |2 − |ai − aj |2

2|ai||aj |

=
(|ai| − |aj |)2 − |ai − aj |2

2|ai||aj |
+ 1

=
(|ai| − |aj | − |ai − aj |)(|ai| − |aj |+ |ai − aj |)

2|ai||aj |
+ 1

= 1− (−|ai|+ |aj |+ |ai − aj |)(|ai| − |aj |+ |ai − aj |)
2|ai||aj |

We can bound the second term: using |ai| > ri, |aj | < rj + rk, |ai − aj | > ri,

(−|ai|+ |aj |+ |ai − aj |)(|ai| − |aj |+ |ai − aj |)
2|ai||aj |

≥ ri[ri − rj − rk + ri]

2(ri + rk)|aj |

≥
ri[

1
2rj − rk]

2(ri + rk)|aj |

≥
ri

1
6rj

2(ri + rk)|aj |

=
1

12

ri
ri + rk

rj
|aj |

.

Notice ri + rk <
4
3ri, and |aj | < rj + rk <

4
3rj , so above ≥ 1

12
3
4

3
4 = 3

64 . So
θ > arccos( 61

64 ) =: θ0 > 0.

Corollary 2.2. Let A ⊂ Rn and let µ be a Radon measure on Rn with µ(A) <∞.
Given an open set U ⊂ Rn and a collection F of closed balls with infBr(a)∈F r = 0,
∀a ∈ A, there exists countable disjoint subcollection G ⊂ F with

•
⋃
B∈G B ⊂ U ;

• µ((A ∩ U) \
⋃
B∈G B) = 0.

Proof. Take F ′ := {Br(a) ∈ F : a ∈ A∩U, r ≤ 1, Br(a) ⊂ U}. Apply Besicovitch

to get countable disjoint subcollections G1, ...,GN with A ∩ U ⊂
⋃N
i=1

⋃
B∈Gi B.

This implies that µ(A ∩ U) ≤
∑N
i=1 µ(A ∩ U ∩

⋃
B∈Gi B). There exists i0 ∈

{1, ..., N} with µ(A∩U ∩
⋃
B∈Gi0

B) ≥ 1
N µ(A∩U). Choose θ ∈ (0, 1

N ). So there

are disjoint balls B1, .., BM1
∈ Gi0 with µ(A ∩ U ∩

⋃M1

j=1Bj) > θµ(A ∩ U). This

implies µ(A ∩ U \
⋃M1

j=1Bj) < (1− θ)µ(A ∩ U). We can inductively repeat this

process to get for each ` ≥ 1, a disjoint union of balls
⋂M`

j=1Bj with

µ

A ∩ U \ M⋃̀
j=1

Bj

 < (1− θ)`µ(A ∩ U).

So in the end
⋃∞
j=1Bj works.

10
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3 Densities and Differentiation of Radon Mea-
sures

Definition 3.1. Let µ, ν be Radon measures on Rn. The upper density of ν
with respect to ν is

D̄µν(x) :=

{
lim supr↓0

ν(Br(x))

µ(Br(x))
if ∀r > 0, µ(Br(x)) > 0

+∞ if ∃r > 0, µ(Br(x)) = 0,

The lower density of ν with respect to µ is

Dµν(x) :=

{
lim infr↓0

ν(Br(x))

µ(Br(x))
if ∀r > 0, µ(Br(x)) > 0

+∞ if ∃r > 0, µ(Br(x)) = 0,

We say ν is differentiable with respect to µ at x if D̄µν(x) = Dµν(x).

Lemma 3.2. Let µ, ν be Radon measures on Rn and let α ∈ (0,∞). If

A ⊂ {x ∈ Rn : Dµν(x) ≤ α},

then ν(A) ≤ αµ(A). And if

A ⊂ {x ∈ Rn : D̄µν(x) ≥ α},

then ν(A) ≥ αµ(A).

Proof. We will prove the first statement in detail. By restricting to compact
sets, we will assume µ and ν are finite. Fix ε > 0 and an open set U ⊃ A.
For each a ∈ A, there exists arbitrarily small radii r > 0 for which ν(Br(a)) <
(α+ ε)µ(Br(a)). So, we can consider

F := {Br(a) ⊂ U : a ∈ A, ν(Br(a)) < (α+ ε)µ(Br(a))}.

By Corollary 2.2, there exists countable, disjoint subcollection G ⊂ F with⋃
B∈G B ⊂ U and ν(A\

⋃
B∈G B) = 0. Now ν(A) = ν(

⋃
B∈G B) =

∑
B∈G ν(B) ≤

(a+ ε)
∑
B∈G µ(B) = (α+ ε)µ(

⋃
B∈G B) ≤ (α+ ε)µ(U). By outer regularity and

arbitrariness of ε, we are done.

Theorem 3.3. Let µ, ν be Radon measures on Rn. Then Dµν:

(i) exists µ-a.e.;

(ii) is finite µ-a.e.;

(iii) is µ-measurable.

Proof. Once again, assume µ and ν are finite. Write I := {x ∈ Rn : D̄µν =
+∞}. Then for any α > 0, we have I ⊂ {D̄µν ≥ α}, and so by Lemma 3.2,
µ(I) ≤ 1

αν(I). Since ν(I) <∞, we deduce µ(I) = 0.
For a, b ∈ Q with a < b, let Ra,b := {Dµν < a < b < D̄µν}. Now

{Dµν does not exist} ⊂
⋃
a<b,a,b∈QRa,b, and from Lemma 3.2, we have

bµ(Ra,b) ≤ ν(Ra,b) ≤ aµ(Ra,b).

11
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But a < b, so we must have µ(Ra,b) = 0. Observe now that x 7→ µ(Br(x)) is
Borel measurable for any fixed r > 0 and any Radon measure µ (this follows
from the fact that it is upper semicontinuous). Then for fixed k ∈ N,

x 7→


ν(B1/k(x))

µ(B1/k(x))
if µ(B1/k(x)) > 0,

0 otherwise

is Borel measurable. Now it follows Dµν is Borel measurable, just by taking
lim inf, lim sup.

Theorem 3.4 (Radon-Nikodym Derivatives). Let µ, ν be Radon measures on
Rn and suppose ν � µ. Then, for every µ-measurable set A ⊂ Rn, we have:

ν(A) =

∫
A

Dµν(x) dµ(x).

Recall that ν � µ means ν is absolutely continuous with respect to µ, whose
definition is µ(A) = 0 =⇒ ν(A) = 0 for all µ-measurable A ⊂ Rn.

Proof. We claim the sets I = {Dµν = +∞}, Z = {Dµν = 0} and U = {Dµν <
D̄µν} are all ν-null. µ(I) = µ(U) = 0 from Theorem 3.3, so by hypothesis,
ν(I) = ν(U) = 0. And ∀ε > 0, Z ⊂ {Dµν ≤ ε}. So by the lemma, ν(Z) ≤ εµ(Z).
Assuming for now that µ, ν are finite, we deduce ν(Z) = 0. Fix µ-measurable
A ⊂ Rn. For m ∈ Z and t > 1, write Am := {x ∈ A : tm < Dµν(x) ≤ tm+1}.
These are all µ-measurable. This implies ν-measurable: take Borel B ⊃ Am
with µ(B) = µ(Am). Then µ(B \ Am) = 0. So ν(B \ Am) = 0. So B \ Am is
ν-measurable. And Am = B \ (B \Am) so is ν-measurable. Now:∫

A

Dµν dµ =
∑
m∈Z

∫
Am

Dµν dµ+

∫
Z∩A

Dµν dµ ≤ tm+1
∑
m∈Z

µ(Am)

< t
∑
m∈Z

ν(Am) = tν(
⋃
m∈Z

Am) = tν(A),

because ν(I ∪ Z ∪ U) = 0. Also

tν(A) = t
∑
m∈Z

ν(Am) ≤ tm+2
∑
m∈Z

µ(Am) ≤ t2
∑
m∈Z

∫
Am

Dµν dµ = t2
∫
A

Dµν dµ.

Now let t ↓ 1 to complete.

Definition 3.5. We say two Radon measures µ, ν on Rn are mutually singular,
and write µ ⊥ ν, if there exists a Borel set B ⊂ Rn such that µ(B) = ν(Bc) = 0.

Theorem 3.6 (Lebesgue Decomposition). Let µ, ν be Radon measures on Rn.
There exists Radon measures νac and νs with: (i) ν = νac + νs; (ii) νac � µ;
(iii) µs ⊥ µ; (iv) Dµν = Dµνac µ-a.e.; (v) Dµνs = 0 µ-a.e. [So, by Theorem 3.4:
ν(A) =

∫
A
Dµν dµ+ νs(A) for all µ-measurable A ⊂ Rn.]

Proof. Again assume µ, ν are finite. Let E = {Borel B : µ(Bc) = 0}. Let
{Bk}∞k=1 ∈ E be such that ν(Bk) ≤ infA∈E ν(A) + 1

k . Then B =
⋂∞
k=1Bk is

Borel, and µ(Bc) ≤
∑∞
k=1 µ(Bck) = 0. And ν(B) = infA∈E ν(A). So write

νbBc =: νs and νac := νbB. Clearly νs(B) = 0.

12
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We check (i)-(iii). Take µ-measurable C with µ(C) = 0. Suppose (for
contradiction) that νac(C) = ν(C ∩ B) > 0. Take Borel S ⊃ B \ (C ∩ B)
with νac(S) = νac(B \ (C ∩ B)) < ν(B). And µ((S ∩ B)c) ≤ µ(Sc) + µ(Bc) ≤
µ(C) + 2µ(Bc) = 0. So we violate the fact that ν(B) = infA∈E ν(A).

It is enough to show (v) as (iv) is equivalent. With T := {x ∈ B : Dµνs ≥
α > 0}, we have νs(T ) ≤ νs(B) = 0 and µ(T ) ≤ 1

ανs(T ) = 0. And since
µ(Bc) = 0, we deduce Dµνs = 0 µ-a.e. Then by additivity of density with
respect to µ (up to sets of µ-measure zero), we deduce (iv).

Theorem 3.7 (Lebesgue-Besicovitch Differentiation). Let µ be a Radon measure
on Rn. If f ∈ L1

loc(Rn;µ), then for µ-a.e. x ∈ Rn we have

lim
r↓0

1

µ(Br(x))

∫
Br(x)

f(y) dµ(y) = f(x).

And for p ∈ [1,∞), if f ∈ Lploc(Rn;µ), then for µ-a.e. x ∈ Rn,

lim
r↓0

1

µ(Br(x))

∫
Br(x)

|f(x)− f(y)|p dµ(y) = 0.

Proof. Let f± be positive and negative parts of f . For Borel B ⊂ Rn, define
ν±(B) :=

∫
B
f± dµ. And for general A ⊂ Rn, define

ν±(A) := inf{ν±(B) : B Borel, B ⊃ A}.

One checks now that ν± are Radon measures, absolutely continuous with respect
to µ. So by Radon-Nikodym, for every Borel B ⊂ Rn, we have ν±(B) =∫
B
f± dµ =

∫
B
Dµν

± dµ. We deduce that Dµν
± = f± µ-a.e.. Now, for µ-a.e. x,∫

Br(x)

f(y) dµ(y) =

∫
Br(x)

f+(y) dµ(y)−
∫
Br(x)

f−(y) dµ(y)

= ν+(Br(x))− ν−(Br(x)).

Divide both sides by µ(Br(x)) and send r ↓ 0. Then

lim
r↓0

1

µ(Br(x))

∫
Br(x)

f(y) dµ(y) = Dµν
+(x)−Dµν

−(x) = f+(x)−f−(x) = f(x).

Note: the lecturer mixed up closed balls and open balls, so replace all open balls
with closed balls.

For the second part, let {rj}∞j=1 be dense subsets of R and apply the first

statement to x 7→ |f(x) − rj |p ∈ L1
loc(Rn, µ) for each j. So now there exists a

µ-null A ⊂ Rn such that if x /∈ A then for all j,

lim
r↓0

1

µ(Br(x))

∫
Br(x)

|f(y)− rj |p dµ(y) = |f(x)− rj |p.

So pick rj with |rj−f(x)| < ε. Using |f(y)−f(x)|p ≤ 2p(|f(y)−rj |p+|f(x)−rj |p),
and send ε ↓ 0.

Remark. With Lebesgue on Rn, apply to 1E for Lebesgue measurable E. Then
for almost every x ∈ E,

lim
r↓0

Leb(Br(x) ∩ Ec)
Leb(Br(x))

= 0.

13
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4 Area and Co-area

Developing a rigorous notion of area in Rn was one of the main driving forces
for developing Geometric Measure Theory. For a few minutes I will treat you
like Calculus 101 students.

Let D be the open disk in R2. Then to evaluate Area(D) =
∫
B1(0)

dx dy we

use change of variables. Let’s use polar coordinates. There’s this thing called r
and θ, and we can integrate over r ∈ (0, 1] and θ ∈ [0, 2π). But it’s dangerous to
show them a picture of a rectangle in the (r, θ) plane. It’s confusing for some

people. It’s not the same as the area of the rectangle
∫ 2π

0

∫ 1

0
dr dθ. At the heart

of this example of course is some function F (r, θ) = (r cos θ, r sin θ). What’s the

area of F (rectangle)? We work out the Jacobian. This gives us
∫ 2π

0

∫ 1

0
r dr dθ.

We generalise this to F almost everywhere differentiable. We will focus on F
being Lipschitz.

Proposition 4.1. A continuous increasing function f : [a, b]→ R is differentiable
almost everywhere.

Proof. With F = {(c, d) : (c, d) ⊂ [a, b]} and ζ((c, d)) = f(d) − f(c), let Lf

be the outer measure produced by Carathéodory’s general construction. This
is a Radon measure. So by decomposing Lf with respect to L 1, we get an
L 1-measurable function g : [a, b]→ R, a Radon measure ν and a set S ⊂ [a, b]
such that ν([a, b] \ S) = 0, L 1(S) = 0 and such that for every L 1-measurable
A ⊂ [a, b], we have Lf (A) =

∫
A
g dL 1 + ν(A). Since f is continuous, we can

check that Lf ((c, d)) = f(d)− f(c). Now, look at∣∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣∣ =

∣∣∣∣Lf ((x, x+ h))

h
− g(x)

∣∣∣∣
=

∣∣∣∣∣ 1h
∫ x+h

x

g(y) dL 1(y)− g(x) +
1

h
ν((x, x+ h))

∣∣∣∣∣
≤ 1

h

∫ x+h

x

|g(y)− g(x)|dL 1(y) +
ν((x, x+ h))

h

≤ 2
1

2h

∫ x+h

x−h
|g(y)− g(x)|dL 1(y) + 2

ν([x− h, x+ h])

2h
.

As h ↓ 0, this goes to zero for almost every x (first term by Lebesgue differentia-
tion, second term because DL 1ν = 0 L 1-a.e.

Remark. ν is the failure of the Fundamental Theorem of Calculus – it is called
the Cantor part of the derivative. See the Devil Staircase.

Proposition 4.2. Let f : [a, b] → R be Lipschitz. Then f is differentiable
L 1-a.e., f ′ ∈ L∞, and f(x) = f(a) +

∫ x
a
f ′(t) dt for all x ∈ [a, b].

Proof. Write

Vf (x) := sup


n∑
j=1

|f(xj)− f(xj−1)| : a ≤ x0 < x1 < ... < xn ≤ x

 .

14
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Notice
∑n
j=1 |f(xj)− f(xj−1)| ≤ Lip(f)(b− a). This function is continuous and

increasing [exercise]. And so is Vf (x)− f(x), so that we can use this function
to express f as the difference of two continuous, increasing functions. So by
Proposition 4.1, f is differentiable L 1-a.e. Since |f(x+ h)− f(x)| ≤ Lip(f)|h|,
we get ‖f ′‖L∞ ≤ Lip(f).

Write F (x) =
∫ x
a
f ′(t) dL 1(t). So now:

1

2h

∫ x+h

x−h
f ′(t) dt =

1

2

(
F (x+ h)− F (x)

h
+
F (x)− F (x− h)

h

)
.

Since F is Lipschitz, it is differentiable almost everywhere, and using Lebesgue
differentiation on the left, we deduce, f ′(x) = F ′(x) L 1-a.e.

Now g = F − f is Lipschitz with g′ = 0 L 1-a.e. [We want to conclude that g
is constant, and we need to use the Lipschitz condition. This step is surprisingly
hard. As far as the lecturer knows, we need to use a covering lemma.]

Let E ⊂ (a, b) be the set with L 1((a, b) \ E) = 0 and such that g is
differentiable at each point of E with derivative zero. Fix x ∈ (a, b) and
ε > 0. Using Corollary to Besicovitch, there exists a countable disjoint collection
[xj − hj , xj + hj ] ⊂ (a, x) for j = 1, 2, ... with |g(xj + hj) − g(xj − hj)| ≤
2hjε and L 1

(
E ∩ (a, x) \

⋃∞
j=1[xj − hj , xj + hj ]

)
= 0. Fix N ≥ 1 such that

L 1
(
E ∩ (a, x) \

⋃N
j=1[xj − hj , xj + hj ]

)
< ε, and write the intervals in order.

So now, since

|x1 − h1 − a|+
N−1∑
j=1

|(xj+1 − hj+1)− (xj + hj)|+ |x− (xN + hN )| ≤ ε,

we know

|f(x1−h1)−f(a)|+
N−1∑
j=1

|g(xj+1−hj+1)−g(xj+hj)|+|g(x)−g(xN+hN )| ≤ 2 Lip(f)ε.

So now,

|g(a)− g(x)| ≤ 2 Lip(f)ε+

N∑
j=1

|g(xj + hj)− g(xj − hj)| ≤ 2 Lip(f)ε+ 2(b− a)ε.

So since ε > 0 was arbitrary, we can deduce g(x) = g(a) for all x ∈ (a, b].

Theorem 4.3 (Rademacher’s Theorem). Let f : Rn → R be Lipschitz. Then f
is differentiable L n-a.e.

Proof. For any x ∈ Rn and ‘direction’ ω ∈ Sn−1 = ∂B1(0), the function
t 7→ f(x + tω) is a Lipschitz function on the line `x,w := {x + tω : t ∈ R}
and hence for L 1-a.e. t ∈ `x,ω, the derivative d

dtf(x + tω) exists. So let Aω
denote the set of points x ∈ Rn at which the derivative d

dt

∣∣
t=0

f(x+ tω) exists.

Then Acω ∩ `y,ω has L 1-measure zero for any y ∈ Rn. So, by Fubini’s Theorem,
L n(Rn \Aω) = 0 for every ω ∈ Rn.
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Next, we check that Dωf(x) := d
dt

∣∣
t=0

f(x+ tω) is equal to
∑n
j=1 ω

jDjf(x)
a.e. Fix ξ ∈ C∞c (Rn) and consider∫

Rn

f(x+ tω)− f(x)

t
ξ(x) dx = −

∫
Rn

ξ(x)− ξ(x− tω)

t
f(x) dx.

By Dominated Convergence Theorem,∫
Rn
Dωf(x)ξ(x) dx = −

∫
Rn

n∑
j=1

ωjDjξ(x)f(x) dx

=

∫
Rn

n∑
j=1

ωjDjf(x)ξ(x) dx.

Since this holds for arbitrary ξ ∈ C∞c (Rn), we have Dωf(x) =
∑n
j=1 ω

jDjf(x)
L n-a.e.

Finally, let ω1, ω2, ... be dense in Sn−1 and write

Q(ω, h)(x) :=
f(x+ hω)− f(x)

h
−Dωf(x).

For each k ∈ N, let Ak be the set of x for which Dωkf(x) exists,
D1f(x), ..., Dnf(x) exists and Dωkf(x) =

∑n
j=1 ω

j
kDjf(x). Then let A =⋂∞

k=1Ak. We know that L n(Rn \ A) = 0 and for each x ∈ A and k ∈ N,
we have Q(ωk, h)(x)→ 0 as h→ 0.

Fix x0 ∈ A and ε > 0. There exists K such that Sn−1 ⊂
⋃K
j=1Bε(ωj),

then let h̄ be such that |h| < h̄ =⇒ maxj=1,...,K |Q(ωj , h)(x0)| < ε. And now
|Q(ω, h)(x0)| ≤ |Q(ω, h)(x0)−Q(ωi, h)(x0)|+|Q(ωi, h)(x0)|, (where |ω−ωi| < ε),
so that for |h| < h̄,

|Q(ω, h)(x0)| ≤
∣∣∣∣f(x+ hω)− f(x+ hωi)

h

∣∣∣∣+

∣∣∣∣∣∣
n∑
j=1

ωjDjξ(x)f(x) dx

∣∣∣∣∣∣+ ε

≤ (2 Lip(f) + 1)ε.

Think carefully as to why bound of this form suffices.

Area Formula

Given f : Rn → Rn+k Lipschitz, write Dfx for the linear map from Rn → Rn+k

with matrix (Djf
i(x))i=1,...,n+k,j=1,...,n. And write

J f(x) :=
√

det((Dfx)∗ ◦Dfx),

called the Jacobian matrix.

Theorem 4.4 (Area Formula). Let A ⊂ Rn be L n-measurable and let f : A→
Rn+k be Lipschitz. Then

• Hn(f(A)) =
∫
A
J f(x) dL n(x) if f is injective.
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• In general ∫
Rn+k

H0(A ∩ f−1(y)) dHn(y) =

∫
A

J f(x) dL n(x).

• And if u : A→ R is L n-integrable, we have∫
Rn+k

∑
x∈f−1(y)

u(x) dHn(y) =

∫
A

u(x)J f(x) dL n(x).

Remark. (i) If A ⊂ Rn and f : A→ R Lipschitz, then

f̄(x) := inf
z∈A

[f(z) + Lip(f)|x− z|]

is a Lipschitz function on Rn with f̄ |A = f and Lip(f̄ |A) = Lip(f).

(ii) Notice that (for the purposes of proving the theorem), we can assume that
f is differentiable on all of A.

To prove the first statement in the theorem, you approximate by linear
functions.

Example. For f : [0, 1] → Rk Lipschitz, J f = |( ddtf
1, ..., ddtf

k)| = |ḟ(t)|, so

H1(f([0, 1])) =
∫ 1

0
|ḟ(t)|dt holds for injective parametrisation of a curve, cf

Analyst’s Travelling Salesman Problem.

Coarea Formula

Given f : Rn+k → Rn Lipschitz, write Dfx for the linear map from Rn+k → Rn
with matrix (Djf

i(x))i=1,...,n,j=1,...,n+k. And write

J f(x) :=
√

det(Dfx ◦ (Dfx)∗).

Another Calculus 101 digression. Let f : D → [0, 1] be the function from

the disk in R2 to R by f(x, y) =
√
x2 + y2. If we have t ∈ [0, 1], then f−1({t})

is a circle. For each level set, find the length of the circle then integrate over t:∫ 1

0

H1(f−1({t})) dt =

∫ 1

0

2πt dt = π = Area(D) =

∫
D

1 dH2.

Theorem 4.5 (Coarea Formula). Let A ⊂ Rn+k be L n+k-measurable and
f : A→ Rn be Lipschitz. Then:

(i)
∫
Rn H

k(A ∩ f−1(y)) dHn(y) =
∫
A
J f(x) dL n+k(x).

(ii) And if u : A→ R is L n+k-integrable,∫
Rn

(∫
f−1(y)

u(x) dHk(x)

)
dHn(y) =

∫
A

u(x)J f(x) dL n+k(x).

Remark. For appropriate f , you will sometimes want to take u = 1/J f . If
n = 1, we have

∫
R
∫
f−1(y)

1
|∇f | dH

k dH1 = L n+1(A).
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5 Rectifiability and C1 submanifolds

Theorem 5.1. If f : Rn → R is Lipschitz, then given ε > 0 there exists C1

function g : Rn → R with L n({f(x) 6= g(x)} ∪ {Df(x) 6= Dg(x)}) < ε.

Theorem 5.2 (Whitney Extension — C1 case). Let A ⊂ Rn be closed and
let f : A → R be a continuous function. Suppose ν : A → Rn is a continuous
function for which

lim
δ↓0

sup
x,y∈K

0<|x−y|<δ

f(y)− f(x)− ν(x)(x− y)

|x− y|
= 0

for all compact K ⊂ A. Then there exists a C1 function g : Rn → R with g|A = f
and Dg|A = ν.

Remark. If A has an interior, then the condition on ν implies that the derivative
of f is already ν.

Proof. We will describe the Whitney decomposition of Ac. Define the kth dyadic
mesh as

Mk :=

{[
q1

2k
,
q1 + 1

2k

]
× ...×

[
qn
2k
,
qn + 1

2k

]
⊂ Rn : q1, ...qn ∈ Z

}
.

The key property is that if Q,Q′ ∈
⋃
k∈Z Mk and intQ ∩ intQ′ 6= ∅, then either

Q ⊂ Q′ or Q′ ⊂ Q. Then define kth layer from A as

Ωk :=
{
x ∈ Rn : (2

√
n)2−k < dist(x,A) < (2

√
n)2−k+1

}
.

Now set
F0 :=

⋃
k∈Z
{Q ∈Mk : Q ∩ Ωk 6= ∅} .

Notice that each cube Q ∈ F0 intersects at most 2 different dyadic layers.
So if Q,Q′ ∈ F0 are such that intQ ∩ intQ′ 6= ∅, then if Q′ ⊃ Q, we have
diam(Q′) ≤ 4 diamQ. So for each Q ∈ F0, {Q′ ∈ F0 : Q′ ⊃ Q} is actually finite.
So let F be a subcollection of F0 which is maximal with respect to inclusions
(i.e. for each cube Q ∈ F0, take biggest cube containing it). We see now that

(i) intQ ∩ intQ′ = ∅ for all Q,Q′ ∈ F ;

(ii) Ac =
⋃
Q∈F Q.

But much more is true. If Q ∈ F ∩Mk then there is a point x0 ∈ Q ∩ Ωk and
this means dist(x0, A) ≤ (2

√
n)2−k+1 = 4 diamQ. So dist(Q,A) ≤ 4 diamQ.

And, for any a ∈ A, x ∈ Q, we have

(2
√
n)2−k ≤ |x0 − a| ≤ |x0 − x|+ |x− a| ≤ diam(Q) + |x− a|,

so |x− a| ≥ diam(Q), i.e. diamQ ≤ dist(Q,A). So

diam(Q) ≤ dist(Q,A) ≤ 4 diam(Q).

Next, if Q,Q′ ∈ F are adjacent cubes (Q ∩ Q′ 6= ∅), then diam(Q) ≤
dist(Q,A) ≤ dist(Q′, A)+diam(Q′) ≤ 5 diam(Q′). In fact this means diam(Q) ≤
4 diam(Q′).
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A given cube Q ∈ Mk intersects 3n cubes in Mk, and each cube in Mk

determines 4n cubes in Mk+2. So at most 12n cubes in F intersect Q.
Now, if Q,Q′ ∈ F are not adjacent, i.e. Q∩Q′ = ∅, then there is some other

cube Q′′ such that dist( 9
8Q
′, Q) ≥ e(Q′′)− 1

8e(Q
′) > 0 where e is the edge length.

So 9
8Q
′∩Q 6= ∅ =⇒ Q′∩Q 6= ∅. So now for any x0 ∈ Ac, x0 ∈ Q for some Q ∈ F .

And |{ 9
8Q
′ : 9

8Q
′ 3 x0}| ≤ |{ 9

8Q
′ : 9

8Q
′∩Q 6= ∅}| ≤ |{9

8Q
′ : Q′∩Q 6= ∅}| ≤ C(n).

So { 9
8Q
′ : Q′ ∈ F} has bounded overlap, in the sense that∑

Q∈F
1 9

8Q
≤ C(n).

Now the next part we are going to be sketchy. Let Q0 denote the unit cube at
the origin. Let ϕ ∈ C∞c ( 9

8Q0) with ϕ ≡ 1 on Q0, 0 ≤ ϕ ≤ 1, and the derivatives
are bounded by a constant that only depends on the dimension of the space and
the power of the derivative, i.e. |Dαϕ| ≤ C(n, |α|). Then set

ϕQ(x) := ϕ

(
x− xQ
e(Q)

)
,

where xQ is the centre of the cube Q. Then

ϕ∗Q :=
ϕQ∑

Q′∈F ϕQ′

is a locally finite partition of unity (the sum is only ever a finite sum). For each
cube Q ∈ F we also pick pQ ∈ A with dist(Q,A) = dist(Q, pQ). Finally, set, for
x ∈ Ac,

g(x) =
∑
Q∈F

ϕ∗Q(x)
(
f(pQ) + ν(pQ)(x− pQ)

)
.

It is now quite a lot of checking to verify that this works.

Proof of Theorem 5.1. There exists A1 ⊂ Rn such that L n(Rn \A1) = 0 and f
is differentiable on A1 (Rademacher). By Lusin, there exists A2 ⊂ A1 such that
L n(A1 \A2) < ε/4 and Df |A2

is continuous. For k ∈ N, let

ηk(x) := sup
y∈B1/k(x)\{x}

f(y)− f(x)−Df(x)(y − x)

|x− y|
.

We know ηk → 0 pointwise on A2. By Egoroff’s Theorem ∃A3 ⊂ A2 with
L n(A2 \ A3) < ε/4 and such that ηk → 0 locally uniformly on A3. And then
by inner regularity, there exists a closed A ⊂ A3 with L n(A3 \A) < ε/4. Now
apply Whitney extension on A with ν = Df .

Definition. A set M ⊂ Rn+k is said to be countably n-rectifiable (or often just
n-rectifiable or rectifiable) if Hn(M ∩K) <∞ for all compact K ⊂ Rn+k and
M ⊂M0 ∪

⋃∞
j=1 Fj(Rn), where Hn(M0) = 0 and Fj : Rn → Rn+k are Lipschitz

functions.

Exercise. If M is n-rectifiable then M ⊂M0 ∪
⋃∞
j=1Nj , where H(M0) = 0 and

Nj are embedded n-dimensional C1-submanifolds of Rn+k.

Definition. Let M ⊂ Rn+k be a set with the following property: ∀y ∈ M , ∃
open sets U ⊂ Rn+k, V ⊂ Rn and a C1 map Ψ: V → U such that
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(i) y ∈ U ;

(ii) Ψ(V ) = M ∩ U ;

(iii) Ψ is injective;

(iv) DΨ(x) is injective for every x ∈ V ;

(v) Ψ−1(K) is compact in V whenever K is compact in U [properness].

Then we say that M is a (properly) embedded n-dimensional C1-submanifold of
Rn+k.

Remark. Notice if A ⊂ U is Borel, then Hn(A ∩M) =
∫

Ψ−1(A)
J Ψ dHn, by

the area formula. And

J Ψ = det(DiΨ ·DjΨ)1/2,

i.e. in the language of differential geometry, Riemannian volume on M is given
by
√

det g, where gij = DiΨ ·DjΨ is the metric induced by coordinates given by
Ψ−1|M∩U .

Definition. Let (µj)
∞
j=1 and µ be Radon measures on the metric space X. We

say µj → µ in the sense of Radon measures if µj(f)→ µ(f) for all f ∈ Cc(X).
[In probability, this is weak convergence of measures.] Space of Radon measures
on X is Cc(X)∗ and so this is a w∗-convergence in the functional analysis sense.

Definition. We say that M ⊂ Rn+k has an approximate tangent plane P at
x0 ∈ M if Hnbηx0,ρ(M) → HnbP as ρ → 0 in the sense of Radon measures,
where ηx0,ρ(x) = x−x0

ρ .

Exercise. If M is n-rectifiable then it has an approximate tangent plane at
Hn-almost every point of M .

Theorem. Suppose M ⊂ Rn+k has Hn(M∩K) <∞ for all compact K ⊂ Rn+k.
If M has an approximate tangent plane at Hn-a.e. point of M , then it is n-
rectifiable. By taking f ∈ Cc(Rn+k) with 0 ≤ f ≤ 1, f ≡ 0 on B1+ε(0)c and
f ≡ 1 on B1(0), we have

Hn(M ∩Bρ(x0))

ωnρn
= ω−1

n Hn(ηx0,ρ(M) ∩B1(0)) = ω−1
n

∫
ηx0,ρ(M)

f dHn +O(ε),

and so if M has approximate tangent plane at x0, then limρ↓0
Hn(M∩Bρ(x0))

ωnρn
= 1.

This is the start of a very long story.
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