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1. Vectors

Recap of Lecture 1: Vectors

Scalar: Value; generally in R, but could be in C
Vector: Magnitude and direction

Displacement vector: relative position

Position vector: position relative to origin

This part of the course concentrates on physical space
Euclidian space = can use Cartesian coordinates

3D Euclidian space is R® - three real vector components

[There will be some discussion of other bases (e.g. R" eigenvector
basis) in Easter term, but more (e.g. Hilbert space C") in Part IB.]

u=u=u=u=Ud

—~ —_

Magnitude: Ul
Unit vector: U=—

Vector addition commutative: a+b=b+a.

Vector addition associative: (a+b)+c=a+(b+c)
Vector subtraction: a—b=a+(-b)=(-b)+a

Multiplication by scalar distributive: A(a+b)=A1a+ b
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1. Vectors

Now Lecture 2: Vectors

|[Aa]=|A||a] ***Notes (p.5) were missing the absolute value on A

Kinematics: mathematics of motion:

_u(t+ot)—ut) .. Su du . . d°r
a=Iim =lim—=—=u=¥t —
St—0 51: ot—0 5t dt dt

Coordinate axes: effect vector components — the |basis| of the vector
space

Need to span| the space

Coordinate system has axes and origin.

Unit vectors for Cartesian coordinates: |jl2 or X,Y,Z or e,,e,,e,

Right-handed system

Now Lecture 2: Vectors
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1. Vectors Recap of Lecture 2: Vectors

Recap of Lecture 2: Vectors

Basis vectors need not be orthogonal (and need not be unit length),
but this can make vector algebra and vector calculus harder.

Vector length: |r|= \/xz +y2+2°

Vector equation of line described by r through points with position
vectors a and b:

r=a+A(b-a), 1eR.

r=a+At.

: : : X—a Z
Component equation of a straight line: X = =
b,—a, b,—a, b,-a

X X y y z 4

What happens if, for example, a, = bX ?

Whatif a, =b,, a, =b, and a, =b,?

Scalar product, dot product or inner product
a-b=|a||b|cosé

For jorthonormal| basis (basis vectors orthogonal and unit length)

a-b=ahb, +ab, +ab,

(Ideas can be extended to higher dimensional or infinite dimensional
spaces)
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1. Vectors Now Lecture 3: Vectors
Scalar product commutative: a-b=Db-a

Scalar product distributive: a-(b+c)=a-b+a-c

Scalar product of vector with itself: a*> =a-a= \a\z

Scalar product zero if vectors orthogonal

If scalar product zero then either vectors orthogonal or at least one
has zero length

Scalar product, [dot product or inner product;

a-b=la||b[cosd=a,b, +ab, +a,b,.

Orthonormal: Unit vectors normal to each other.

Vector equation of a plane: (r—a)-Nn=0orr-n=p

For (r—a)-A=0,then (r—a)-(AN)=0,1€R, butforr-n=p
need to stick with unit normal and agree which unit normal.

Direction cosines: I,m,ninr-A=Ix+my+nz=p
Note: I* +m® +n? =1 since || =1
= | =cosf, m=cosd,, n=cosd,

Now Lecture 3: Vectors
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1. Vectors Recap of Lecture 3: Vectors

Recap of Lecture 3: Vectors

Equation of a plane: r—a=u(b-a)+v(c-a), u,veR

Can use b—a and c—a as basis for points on the plane; in that 2D
basis, r—a=(u,v)

. Vectors The equation of a plane

Example 10: Visibility over a wall

Can an object at the point-(2,3,3/2) be seen by an observer at
(4,5,1) whenr there is'an intervening wall with top given by the line
& D r=(1,2,1)+A(l,~1,~1) (32)

[the z axis is the upward Vértical]?
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1. Vectors Recap of Lecture 3: Vectors

Equation for a sphere: r—a=

Equation for a cylinder: \r —(r-A)A=R

Equation for a cone:(r—q)-A =|r—g|cosa
A n

(r—q)-n=r—gjcosa

(r—q)-f|=|r—q|cosa

(r—q)-fi=—r—qlcosa

Vector or cross product

anb=|al|b[sinon
The unit normal A is perpendicular to both a and b.

Its direction is determined by the right-hand rule.

For right-handed orthonormal coordinate system

—>
Il
l—)
|_>
Il
X)
7\‘)
O

(21)

D
D

iA]=K, Jak=1, KAal=]

— anb=(ahb,-ab, )i+(ab —ab,)j+(ab —ahb )k

(22)
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1. Vectors

Recap of Lecture 3: Vectors

Vector product anti-commutative: anb=-bAa

Vector product distributive: an(b+c)=aAb+anac
Vector product not associative: an (b Ac)#(aab)ac

Vector product using determinants
e Laplace expansion:

~

]k
B R N o M= M N - PR
anb=la, a, ag_lby b, be Z+kbX 3
b, b,

b

X

e

= i(aybz _azby)_J(axbz _asz)+ R(axby _aybx)

e Rule of Sarrus

a,=i(ab,-ab, )+]j(ab —ahb,)+k(ab, -ab,)
b

D A e N
. . .
Ok
0. 0‘ .0’
.

=i(ahb,-ab,)+i(ab, -ahb )+k(ab, -ab,)

Each term has one thing from the first row (i, j or k), one from the
second row (an element of a) and one from the third row (an
element of b).

Each term also has one thing from each column: something in the x
direction, something in the y direction and something in the z

direction.
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1. Vectors Recap of Lecture 3: Vectors

If the xyzxyz--- cyclic order is preserved with things in row order,
then the sign is positive. If it is not preserved, then the sign is
negative.

For example, ]asz preserves the cyclic order, and so this term is
positive. In contrast, ?azby reverses the cyclic order, and so has a
negative sign.

As multiplication by scalars is commutative, switching to ajbX may

appear to reverse the cyclic order, but as the cyclic order of the rows
is also reversed, then it still has a positive sign.

For this part of the course, you do not need to know what a matrix
or determinant is: you only need to be able to determine the vector
product
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1. Vectors Now Lecture 4: Vectors

In the NSTIB maths:
c=anb=g,ab
Einstein notation implies summation over repeated indices so
3 3
G =¢&yab =) gab.
j=1 k=1
Here,

1 ifijk is an even permutation of 123
g =9—1 ifijk isan odd permutation of 123
0 ifi=jorj=kork=i
Is the Levi-Civita symbol.

Even permutations: 123, 231, 312
Odd permutations: 321, 213, 132

0 permutations 123 »>123 = 1
1 permutation 123 -> 321 = -1
2 permutations 321 5312 = 1

Note: The Levi-Civita symbol is not a tensor as it does not obey the
tensor transformation rules.

Now Lecture 4: Vectors
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1. Vectors Recap of Lecture 4: Vectors

Recap of Lecture 4: Vectors

Example 12: Spinning body

A rigid body spins with angular speed @ about an axis i passing
through the point Q. Find a vector expression for the velocity of any
point in the body.
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N > o

Lines and planes

Vector equation of line passing through points given by a and b:

(r-a)a(b—a)=0

= r—a isparallelto b—a
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1. Vectors Recap of Lecture 4: Vectors

0

Vector equation of plane through points given by a, b and ¢
(r-a)-[(b-a)A(c-a)]=0

Shortest distances

(a-a)A(b-a)

Shortest distance to line: d =
b-a
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1. Vectors Recap of Lecture 4: Vectors

Shortest distance to plane: d =|(p—a)-f

b—a)-(t
Shortest distance between two lines d = K ;) (U‘AU)‘
VAN

A line in direction t passing through a point given by position
vector a intersects with one with direction u passing through a
point given by position vector b intersects if the scalar triple
product vanishes: (b—a)-(t Au)=0.

© Stuart Dalziel (Michaelmas, 2020) —13 -



1. Vectors Recap of Lecture 4: Vectors

Scalar triple product
a-bac=b-cra=c-anb
=-a-cAb=-b-anc=-Cc-bara

cyclic order (123, 231, 312) maintain sign,
anticyclic order (321, 213, 132) swap sign
even permutations retain sign, odd permutations swap sign

a, a, a,
a-bac=lb, b, b,
¢, ¢ ¢C

b Aclcos Brore)

Hb||c|sin chﬁ\ COS G, c)

a
a

= |aj|bjc|c0s b,y SIN G,
aj|bjc|cos b, .4 SINO,,
a

b||C|COS G, (4 SIN Gy,

What is the angle between two vectors?

6= cos‘1ﬂ
allb|
@ =sin"! arb]
allb|
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1. Vectors Recap of Lecture 4: Vectors

Volume of parallelepiped formed by vectors a,b,c is V =[a-b Ac|

Tb/\c

Vector triple product
an(bac)=(a-c)b—(a-b)c

normal to a and normal to the normal to both b and ¢

r=an(bac)

(anb)ac=(c-a)b—(c-b)a
Einstein: r=an(bnac)=g,5,a,0C, =",

s=(@nb)rc=g,&ab,0 =5
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1. Vectors Recap of Lecture 4: Vectors

identity EikEam = O1Ojm — OmO;j

im™ jl

an(bac)

=(a-c)b—(a-b)c

(anb)ac

=(c-a)b—-(c-b)a

Provided a-b Ac=0, then a, b, ¢ span 3D space and any other
vector can be written as a linear combination of a, b, c:
d=d,a+db+d.c
(d-bac)a+(d-cra)b+(d-anb)c
- a-bac
d-bac
a-bac’

= d, =

d-caa
a-bac’

d-anb
a-bac’

d, =

d:

C

How much of a is not in plane of b,c? a-(bxc)

How much of d is not in plane of b,c? d-(bxc)

This must be captured by the parts of a that are orthogonal to plane
of b,c

d-bac
a-bac

d:

a
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1. Vectors Now Lecture 5: Vectors
Similarly
~d-cra _d-cnra
a-bac b-caa’
_d-anb _d-anab
a-bac c-anb’

b

d

c

Election of class representative?

“The Faculty Board of Mathematics asked DAMTP to set up a Staff-
Student Committee for Mathematics in the Natural Sciences to
provide an opportunity for discussion of matters relating to the
courses. The Committee has four staff and three student members,
the latter being drawn from the A and B courses in Part 1A and from
the Part IB course.”

Now Lecture 5: Vectors
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1. Vectors Recap of Lecture 5: Vectors

Recap of Lecture 5: Vectors

Units of vectors

Note: if a,b,c all have the dimensions of length, then

[

. [al, [b], |c| all have dimensions of length;

2. a-b is ascalar with dimensions of area (length-squared);

3. b Ac is a vector with dimensions of area (length-squared);

4. a-b Ac is ascalar with dimensions of volume (length-cubed);
5

. an(bAac) is avector with dimensions of volume (length-
cubed);

6. Normalising a vector (so it has unit length) removes its

: . ! : : .
dimensions: N = H does not have physical dimensions;
a

7. b-n has the same dimensions as b (i.e. physical length).

© Stuart Dalziel (Michaelmas, 2020) —18 -



1. Vectors

Recap of Lecture 5: Vectors
Vector area
For a plane of area A
S=An.
Lent term: J' dS =J' ndA
S S
— surface integrals IS f(X)dS = L f (X)n(x)dA

Has dimensions of area A but with a direction
S=S.1+S,J+S,k
= Al (i-0)i+(-m)j+K-n)K |

= A(cos &, ,cosb,,cos0,)

Components of S are the projections of the area onto the planes
normal to the axes.

If S= AR then |S|=| AR =|AljA|=|Al; if A>0 then [S|=A
Vector area of a closed volume is zero: S=0

For an open surface/shell (there is only one ‘side’), then S#0
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1. Vectors Recap of Lecture 5: Vectors

Vector basis

Basis|: a system of vectors used to represent a position in a space.

1. Vectors must be linearly independent
e+ AL, +..+4e,=0 = A =4=..=4,=0. (42)
2. Number of vectors must equal the dimensions of the space
Linear independence means r+a=r has the unique solution a=_0;

= a unique set of coefficients y,,7,,...,y, for every point

=6 +7,+...+7Ex (43)
€l & &g 0 G

b T I Y

Y eNp eNq G

In3D, e,-e,xe, #0

Orthogonal basis: A basis in which all the basis vectors are
orthogonal

Orthonormal basis: An orthogonal basis in which the basis vectors
all have unit length.

N
Scalar product if orthonormal basis: a-b=>"ab; .
i=1

Reciprocal basis — related to the inverse of a matrix comprising the
basis vectors. Basis vectors a, b, ¢ has the reciprocal basis

A bAac B cAa anb

a-brc’  b-cra’  c-anb

sothatif r=ca+ b+ yc,then a=A-r, f=B-r, y=C-r.
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1. Vectors Recap of Lecture 5: Vectors

:d-b/\C

d

a

a-bac

Easter term: These ideas are related to the linear algebra of matrices.
If M is a matrix, then if M is orthogonal M =M", then

M™M = 1. If M is not orthogonal and not singular, then M™M =1.
In each case, the rows of M may be considered as the basis vectors,
and the rows of M™ or M are the inverse basis.
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1. Vectors

Now Lecture 6: Vectors Complex numbers
Cylindrical polar coordinates: (r,0,z)
X=rcosé, y=rsinfd, z=z2
r>0and 0<0<2x (or -z <0< )

Cylindrical polar coordinates: (r,@, z) - right-handed, orthogonal
r =rcoséi +rsindj+ zk
Basis vectors

&, =cosf 1+sind J,

&,=-sin@ 1+cosb J,

D
Il
A0

z

Self-isolation?

If you have been asked to self-isolate and do not have the lecture
notes, please e-mail your Director of Studies (and cc me), telling
them of your situation so we can get the notes to you.

Election of class representative?

“The Faculty Board of Mathematics asked DAMTP to set up a Staff-
Student Committee for Mathematics in the Natural Sciences to
provide an opportunity for discussion of matters relating to the
courses. The Committee has four staff and three student members,
the latter being drawn from the A and B courses in Part 1A and from
the Part IB course.”

Self-nominate by Thursday 22 Oct
Make your ‘campaign speech’ on Saturday 25 Oct
Election Tuesday 27 Oct

Now Lecture 6: Vectors —» Complex numbers
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Recap of Lecture 6: Vectors Complex numbers

Recap of Lecture 6: Vectors — Complex numbers

Cylindrical polar coordinates

Basis vectors

&, =cos@ i+sindj,
&,=-sin@ 1+cosb J,
e, =k
Unit length: €, -€, =¢,-€é, =¢,-¢, =1
Orthogonal: é, -, =8,-é, =€,-é =0

The vector &, is the direction a point would move for a small

increase in @ (for r, z=const). It has unit length (not units of
radians).

r=re +28,, |rl=vr’+z°

Note that & and &, depend on @ and the basis changes depending
on your location.

Important: VVectors have a direction and magnitude, but not a
position. However, using the basis for polar coordinates requires a
knowledge of your position and that you change basis if your
position changes. This can rapidly lead to confusion! For vector
algebra, it is far safer to compute things using a fixed Cartesian
basis.

Plane polar (or circular polar) coordinates: (r,8)

Plane polar coordinates: cylindrical polar without z.
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1. Vectors Recap of Lecture 6: Vectors Complex numbers

Spherical polar coordinates: (r,8,¢)

radius r >0, r =+/x +y? + 7

T 42
polar or inclination angle 0<@< 7, #=cos™ =
.

azimuthal angle 0< ¢ <27, p=tan™"

> <

Think about which quadrant for ¢!

X=rsindcosg,
y=rsinégsing,
Z=rcosé

r=rsin@cos¢ i +rsindsing j+rcosé k

&, =sin6(cos ¢i +sin g]) +cos ok ,
&, = cos O(cos i +sin g]) —sin ok,
8,=—Sin @l +Cos g).

r=re,

e, isafunction of 6 and ¢, &, is a function of 6, and €, isa
function of ¢.
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1. Vectors

Example 21: Tripos question 2005, Paper 1, 5C
The vertices of a tetrahedron O, P,Q, R have coordinates (0,0,0),
(2,L,1), (1,2,2) and (0,0,3) respectively. Find by vector methods

(a) the angle between the faces OPR and OQR [5]

(b) the angle between the vector OP and the normal to the face

POR [51
[5]

(c) the area of the face POR
(d) the shortest distance from the origin to the plane containing P,
0 and R. [5]
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Recap of Lecture 6: Vectors Complex numbers
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2. Complex numbers Recap of Lecture 5: Vectors Complex numbers

Recap of Lecture 5: Vectors — Complex numbers

2. Complex numbers
Domain of Integers: Z  (from Zahlen, German for “numbers”)
Domain of Real numbers: R
Domain of Complex numbers: C
Domain of Imaginary numbers: 1
“Blackboard bold font”
See https://en.wikipedia.org/wiki/Blackboard_bold

Definition of i: J-1=i,

The principal value of the square root:

Complex number; z=X+iy, X,yeR

Real part of z=x+iy : x=R(z)=Re(z)eR

Imaginary part of z=x+iy : y=3(z)=Im(z)eR

Addition and subtraction: similar to vectors

Re(z, +2,) =Re(z,) +Re(z,), Im(z,+z,)=1Im(z)+1Im(z,)
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2. Complex numbers Recap of Lecture 5: Vectors Complex numbers

If ceR, then Re(cz,) =cRe(z,), Im(cz,)=clIm(z,), but
multiplication of complex numbers different from vectors

Re(z,z,) = Re(z)Re(z,) —Im(z,) Im(z,)
Im(z,z,) =Re(z,)Im(z,) +Im(z,)Re(z,)

RxR—>R
IxI >R
RxI—1I

CxR—>C
CxI—>C
CxC—C

Im A

Argand diagram:
Z=X+Ily=rcos@+irsiné

Modulusjof z: |z|=mod(z) =X’ +y* =T

Argument of z: arg(z) = tan‘l¥ = 0; think about quadrant for 6.

Principal argument generally —z <arg(z) <z
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2. Complex numbers Now Lecture 7: Complex numbers

Election of class representative?

“The Faculty Board of Mathematics asked DAMTP to set up a Staff-
Student Committee for Mathematics in the Natural Sciences to
provide an opportunity for discussion of matters relating to the
courses. The Committee has four staff and three student members,
the latter being drawn from the A and B courses in Part IA and from
the Part IB course.”

Self-nominate by Thursday 22 Oct
Make your ‘campaign speech’ on Saturday 25 Oct
Election Tuesday 27 Oct

Now Lecture 7: Complex numbers
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2. Complex numbers Recap of Lecture 7: Complex numbers

Recap of Lecture 7: Complex numbers

*

Complex conjugate): z
Re(z)=Re(z), Im(z)=-Im(z)

7' =|2|, arg(z")=—arg(2)
(7) -

Modulus: 22 =7"2=|7 = ‘z*‘z

6’+2n7r)

Complex exponential; cos@+ising =e? =g

, integer n

If z=x+iy=r(cos@+ising)=re" then
2’ =x—iy=r(cos@—isin@)=r(cos(-6)+isin(-6))=re

—i6

Multiplication z,z, =(re )(r,e ) = fr,e®*

.7 1,7, 1z, 1% r 4
Division &+ =-1-2 =12 — 1 — 1 gi(a-6)
2
Z, 1,17, ‘22‘ I,e I,

Im A
57,
Z,
6 +0,
Z
\ 4

— R
s
Sv

If z=re" and a=se", then z" =a can be written as (n € Z)

I,nein@ _ Seia _ Sei(a+2m7z)
n o +2mrx
so r=s"" and H:Tfor m=0,1---,n-1.
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2. Complex numbers Now Lecture 8: Complex numbers Hyperbolic

functions

De Moivre’s theorem|: cos 16 +isin 16 =(cos @ +isin 9)1 for

AeC.

Complex logarithms: In(exp(z))=exp(In(z))=z VzeC

Since z=|z|exp(iarg(z))=|z|exp(i[arg(z) +2n7]), neZ

then Inz=In(rei(‘9+2””))=Inr+i(9+2n7r), neZ.

The ‘principal value’ is Inz = In(rem) =Inr+i0 (—r<0<r)

Geometric progression

N-1 1_&N N l—ﬂN
S =Yailk=a Ty=) al‘=al
" g 1-2 N kZ 1-2

Election of class representative?

“The Faculty Board of Mathematics asked DAMTP to set up a Staff-
Student Committee for Mathematics in the Natural Sciences to
provide an opportunity for discussion of matters relating to the
courses. The Committee has four staff and three student members,
the latter being drawn from the A and B courses in Part IA and from
the Part IB course.”

Self-nominate by Thursday 22 Oct
e Sizhe Zhang (Churchill)

Make your ‘campaign speech’ on Saturday 25 Oct
Election Tuesday 27 Oct

Now Lecture 8: Complex numbers — Hyperbolic functions

© Stuart Dalziel (Michaelmas, 2020) —30 -



2. Complex numbers Lecture 8: Complex numbers Hyperbolic
functions

Lecture 8: Complex numbers — Hyperbolic functions

2. Complex numbers

Oscillations
X(t)=%R| Ae“* | =R| (a—ib)e" |
=R[(a-ib)(cosat +isinat) |
=R| acosot +iasinet —ibcoset —i’bsin et |.
=R[ acosat +bsinet +i(asinwt —bcosawt) |
=acoswt + bsin wt

with a,beR; A=a-ibeC.

Differentiation by a real variable works as normal so

d dz) d dz
a(Re(z))= Re(a), a(Im(z))= Im(aj

when zeC: teR.
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2. Complex numbers Lecture 8: Complex numbers Hyperbolic
functions

| Example 32: Impedance of AC circuit
You do not need to know the electronics for this course!

The current through a resistor R € R is given by Ohm’s Law
|, =V, /R and so it is in phase with the voltage

Im? VROeia)t
IROeia)'[
NN @9(Vio) = arg(1 o)
Vo = lroR
Re
Re(Veoe™)
2 =Re( e )
V, = IR
The current through a capacity is I = dd? =C d;/tc so if
V =Re(Vg,e ) then I, = Re(iCV,,e™ )
ImT
|.,8" =iwCV,, V'
/A
arg(le,) = arg(VCO)JrE
® —0— 3
» e
I =Re(l¢e' Ve /Re(Vee™)
lco =1C Ve, _ —_l |
Co Co
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2. Complex numbers Lecture 8: Complex numbers Hyperbolic

functions

Fundamental theorem of algebra:

If P(2) is a polynomial of degree n,

P(z)=a,+az+a,2° +---+a 2", a =0,
then P(z) =0 has n (complex) roots for all possible coefficients
a,,8,,a,,---,a, € C.

Equivalently, if z=2z, isaroot of P(z) =0, then

P(z)=(z2-2)Q(z) =0
and Q(z) is a polynomial of degree n—1, but also Q(z) =0 must
have at least one route, so P(z) =(z-2,)(z-2,)R(z) =0, etc.

Note that roots may be repeated.
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3. Hyperbolic functions Lecture 8: Complex numbers Hyperbolic
functions

Lecture 8: Complex numbers — Hyperbolic functions

3. Hyperbolic functions

Hyperbolic cosinecosh x = %(exp(x) +exp(—x))

Hyperbolic sine

sinh x = %(exp(x) —exp(—x))

Hyperbolic tangent| tanh x = sinh X _ exp(x) —exp(=X)
coshx exp(X)+exp(—x)

82 35 g
> 5 =
x X

Relationship with normal trig functions:
cos(iz) = cosh z
sin(iz) =isinh z
tan(iz) =itanhz
Identities:
cosh® x—sinh® x=1
1—tanh?® x = sech?® x

coth® (x) —1=cosech?(X)
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3. Hyperbolic functions Now Lecture 9: Hyperbolic functions

Differentiation
sinhtx=In [x+\/x2 +1], cosh™*x = iln[x+\/x2 —1],

tanh™ x = 1 In {H—X}
2 |1-x

For identities such as cosh(A+ B), swap the sign compared with

their normal circular trig equivalents where there is a product of two
sine functions (but not where there is a single sine). For example,

cos(A+B)=cos AcosB—sin Asin B
cosh( A+ B)=cosh Acosh B +sinh Asinh B

sin(A+B)=sin AcosB+sinBcos A
sinh(A+ B)=sinh Acosh B +sinh B cosh A

Equations for a circle:

2 2
X
X*+y°=r? —2+y—2

=1: centred on origin, radius r
r- r

2

(x=% ) +(y=Y,) =r% x=x,+rcos6, y=y,+rsind: centred

on (X, Yo ). radius r

x* +ax+y?+by+c=0: centred on (—ia,—3b), radius

r :\/(%a)2 +(4b)* —c, provided r e R.

Equations for an ellipse:

2 2
x_2+y_2:1; X=acosd, y=Dbsin@: centred on origin. If a>b,
a“~ b

then semi-major axis a and semi-minor axis b.

Now Lecture 9: Hyperbolic functions — Differentiation
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3. Hyperbolic functions Recap of Lecture 9: Hyperbolic functions
Differentiation

Recap of Lecture 9: Hyperbolic functions — Differentiation

Equations for an hyperbola:
x* —y®=s": x=scosh@, y=ssinhé,

X* —y® =-s*; x=ssinh@, y=scoshd

For ax® +bx+cy’+dy+e=0

e Circle if a=c and (once completing the squares) have positive
constant on right-hand side; no solution if negative constant.

e Ellipse if a, ¢ have same sign (i.e. ac >0) and (once completing

the squares) have positive constant on right-hand side; no solution
if negative constant.

e Hyperbola if a, c have opposite signs.

Recap of Lecture 9: Hyperbolic functions — Differentiation

Derivative of y(x): Y _ im y(x+6x%)-y(x)
dX Ox—0 5X
A
y()
X
—

}y(x+5x) -y

X X +0X
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3. Hyperbolic functions Recap of Lecture 9: Hyperbolic functions
Differentiation

For a function to be differentiable, it must be continuous and

C(FO0=F(x=h)) L (F(xrh)= F(x)
O )

h—0 h—0 h

Differential operator: i
s " dx

d df dg

Product le, — fo)=—qg+f =2

roduct rule dx( g) L9

df d

d(f dg—fdg

Quotient rulel: —(_J: X ; X

dx g g

Leibnitz’s formulal;

d” n n- n(n -1 e
dx”(fg): fMg@ 4 nf 1)9(1)4_%1:( 29@ 4

o nf OgD 4 f OGO

=]
>

f (n-m) gy (m)

The following look like dealing with fractions (although subtler
underneath)

. d
Chain rule; ” i (u(x))

_df (u) du(x) _df du
du dx du dx

(o)
dy \dx

Implicit differentiation|: If g(y) = f(x), then

Reciprocal rule:

dg_dgdy df _ dy_df /dg
dx dydx dx dx dx/ dy
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3. Hyperbolic functions
Differentiation

Recap of Lecture 9: Hyperbolic functions

Functions you should know how to differentiate:

y:Xa yr:axa—l
y =exp(ax) y =aexp(ax)
y=In(ax)=Ina+Inx y,zl
X

y =sin(ax) y' =acos(ax)
y = cos(ax) y' =—asinax
y =sinh(ax) y' = acosh(ax)
y = cosh(ax) y' = asinhax

Others worth remembering (but can be derived):

y = tan ax

y' = asec” ax

y = tanh ax

y' = asech” ax
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3. Hyperbolic functions Typos in notes for earlier lectures

Typos in notes for earlier lectures

Lecture 5, p. 53:
Bxoa i §j k

S,., =L10Ax0D =10 ¥ 0| =%[i(%&—/9)+j(o-o)+|‘<(o—%)]

70 5104 -

as before. Note that we need to be careful in choosing the order

5§x 5@ and not bﬁx O—E to ensure we have the correct
(outward) direction for the normal.

Lecture 8, p. 101:

This is an oscillation with amplitude |A| =2¢ and phase 6 =-7/3:

1 2 -
3

> (f) = Lo cer(df-470)

W

Lecture 9, p. 128:

o~ e — 7€ X <G
w ‘«.Q'\ \Q 2 we. aD P reene L -“.4; )U,(A{) )

{
(0, ! (‘,Lﬂ,Q P A I_ L oD
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Now Lecture 10: Differentiation — Elementary analysis
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3. Hyperbolic functions
Elementary analysis

Recap of Lecture 10: Differentiation

Recap of Lecture 10: Differentiation — Elementary analysis

dn
X"

Leibnitz’s formulal;

(fg) = fMg® 4 pfrHg® 4 n(n—1) fO-Dg@ 4

2!

e nf gD 4 OGO

m=0

n!

:Z(n——.f

(n-m) ()
g
m)!m!

(Video of proof also available separately.)

Stationary point: where dy/dx=0

Stationary point of inflection

d"y/dx" =0 for odd n>2

Curve sketching

Local minimum: d™y/dx" =0, 1<m<n and d"y/dx" >0, even n
Local maximumi: d™y/dx" =0, 1<m<n and d"y/dx" <0, even n

- d™y/dx" =0, 1<m<n and

0. Over what range of x is the function defined?

1. Where are the intercepts with the x and y axes?

2. Are there any symmetries: does y(—x) = y(x) (even) or
y(=x) =—y(x) (odd)?

3. What is the behaviour as X — to0?

4. Are there any

singularities

blows up to infinity)?

(i.e. points where the function

5. Where are the stationary points, and what is their nature?

6. Is the curvature positive or negative? Are there any points

of inflection?

Often do not need to complete all these steps
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3. Hyperbolic functions Recap of Lecture 10: Differentiation
Elementary analysis

For x >0, X% * >50; x %" 5w

— exp(-x)
—— xiexp(-x)

— x3exp(-x)

2 4 6 8 10

Hence, for x —> o0, x"e™* —0

— log(x)
— xlog(x)

_ log(x)
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3. Hyperbolic functions
Elementary analysis

Recap of Lecture 10: Differentiation

Recap of Lecture 10: Differentiation — Elementary analysis

If y=sincx=1sinx; does sinc(0) =17

1.9m

The limit is given by
lim f (x) =K

X—>Xo
if and only if forany ¢ >0, 36 >0
| f(x)—K|<e forall 0<|x

—Xo|< 5.

such that

(108)

e o — - —— e ——

———————————————

Limit can exist even if f(x,)= K or f(X,) is not defined.

© Stuart Dalziel (Michaelmas, 2020) —42 -



3. Hyperbolic functions Now Lecture 11: Elementary analysis Infinite
series

0.8

0.2}

-05 0.0 ' 05

lim sinc(x) =1, but still do not know if sinc(0) =1

x—0

The limit is given by
limf(x)=K

X—>00

if and only if for any € >0, 3 X <oo such that
| f(x)—K|<e forall x>X. (109)

J(x)

Wait, if not yet 9:00! (Apologies for Thursday)

Now Lecture 11: Elementary analysis — Infinite series
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3. Hyperbolic functions Recap of Lecture 11: Elementary analysis
Infinite series

Recap of Lecture 11: Elementary analysis — Infinite series

Algebra of limits
Suppose lim f(x)=F and limg(x) =G, then
X—Xg X—Xg

Addition/subtraction: lim[ f (x)+£g(x)]=F +G
XX,
Multiplication: lim[ f (x)g(x)]=FG
X—>Xg

Division:

lim[ f (x)/g(x)]=F/G if G=0

X—Xg

lim[ f (x)/g(x)] does not exist if F 0 and G=0

X=Xy

lim[ f (x)/g(x)] may existif F=0and G=0

X—>Xy -

lim[ f (x)/g(x)] may exist if F =c and G =0

X=Xy -

Function: lim| f(g(x))]= f(llm[g(x)])_ f(G)iff f(x)is

X=Xy

continuous at Xx=G

Exponents: |Im|:f(X)g(X)]— Ilm[f(x)*o (X)}_FG
X%

I’Hopital’s rule:
If lim f(x)=0 and I|m g(x)=0
X—Xg

or lim f(x)=c0 and I|m g(x) =

X=Xy

then lim F(x )_ lim F'(x)
=% g(x) =% g'(x)

; repeat if necessary

© Stuart Dalziel (Michaelmas, 2020) —44 -



3. Hyperbolic functions Recap of Lecture 11: Elementary analysis
Infinite series

Big-O notation
At finite x:

For f(x), g(x) eR,
f(x)=0(g(x)) as x> a
if and only if 3 constants ¢, K >0 such that
| f(x)| < K]|g(x)| forall |x—a|<e. (110)

At infinity:

For f(x),9(x) eR,
f(x)=0(g(x)) as x >
if and only if 3 constants X, K >0 such that
| T (x)| < Kl|g(x)| forall x> X. (111)

If we say the f(x)= O(xz) when x — cothen we say:

“the function f (x) is the order of x* as x approaches infinity”

By convention, we take the tightest bound. So, if f(x) :O(xz) as

X — oo, we would not say f(x)= O(x3), even though that satisfies
(111).

lim| a+bx+cx’ |=0(1) if a=0; Ixigg[bx+cx2]=0(x)

x—0

Lilpo[a+bx+cx2} :O(Xz);

lim[cosx]=0(1); lim[sinhx]=0(coshx) =O(e")
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3. Hyperbolic functions Recap of Lecture 11: Elementary analysis
Infinite series

Continuity

A real function f(x) is continuous at x=a if:

(i) f(a) exists (i.e. the function is defined there), and
(i) lim f (x) = f (a),

I.e., the limit exists and is equal to the function. (112)

or

A real function f (x) is continuous if forany ¢ >0, 36 >0
such that | f (x)— f(a)| <e forall [x—a|<&. (113)

Limit (lecture 10)

The limit is given by
lim f(x) =K

X=Xy

if and only if for any € >0, 36 > 0 such that
| f(x)—K|<e forall 0<|x—x,|<5. (108)
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6. Infinite series Recap of Lecture 11: Elementary analysis
Infinite series

Recap of Lecture 11: Elementary analysis — Infinite series

6. Infinite series

n
Partial sum: SEE
k=0

If limS, =S, then for any e, there exists a N such that
|S—Sn|<e vn>N.

Series converges if limS, =1im> u, = is finite.
k=0

nN—o0 N—o0 ™=

Need u, — O sufficiently rapidly as k increases

Series diverges if limS, =+o0

N—o0

Series may oscillate between a sequence of values as n increases

If > u=Sand > v, =Tthen >~ (u +v)=S+T.

> o (Uu +V, ) =R does not mean either > " u, or > v,
converge

Absolutely convergent if > ' |u, | converges. Changing the order
of the terms has no effect.

Conditionally convergent/if > u, converges but > "~ |u,| does
not. Changing the order of the terms may affect convergence.

If absolutely convergent then »" " u, is necessarily convergent.

Wait, if not yet 9:00! (Apologies for Thursday)
Now Lecture 12: Infinite series
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6. Infinite series Recap of Lecture 12: Infinite series

Recap of Lecture 12: Infinite series

Grouping terms: does not change convergence; may help analysis.

Reordering terms: if series not absolutely convergent, then
reordering may change whether the series converges.

Harmonic series Zi :1+E+1+--- diverges.
'k 2 3

Alternating harmonic series Zi :1—E+}—E+---= In2.
'k 2 3 4

Comparison test

Compare the unknown positive series Zuk (u,=20)witha
k

known positive series ka (v, 20). For constant K >0:
k

(@) If u, <v, Yk>K then > u, is convergent if > v, is
o o
convergent;

(b) If u >V, Vk>K and > v, diverges, then > u, also
=0 0

diverges. (116)

Ratio test

For a positive series " U, :
limu,.,/u, <1 > U, converges
limu,.,/u, >1 D U diverges

limu,,/u, =1, > U, may converge

The indeterminate (last) case requires a different test.
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6. Infinite series Recap of Lecture 12: Infinite series

Leibnitz criterion

An alternating series S =) (-1)"a, with a, >0

converges if a, is monotonically decreasing for large
enough K and I!im a, =0.
—00

Proof:
Consider a partial sum including an even number of terms:

S, =a—atati—a,.. B
(SR bk e, AR Zu T

=a,,  —a,,.,>0,the S, are monotonically

2n
SIHCB S’.Z(n+]) e SZn

increasing. We can regroup the series

S, =~ —~a )= (a, —a. )~~a, <aq
s e o e
>0 >()

© Stuart Dalziel (Michaelmas, 2020) — 169 —

series Power serie

so the partial sums with an even number of terms are positive
(a,+a,+:-+a,, , >a, +a, ++--+a,,) bounded above (by a,) and

monotonically decreasmg, hence they have a finite limit 0 < § < g,
A3 i —> D, 'M.(;v‘i’ctsiﬂjg
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6. Infinite series Now Lecture 13: Infinite series

Power series

For f(x)=>ax =a;+ax+ax’+-, if the limit
k=0
L=lim_,|a../a/ exists, then:

(a) Series converges (absolutely) for |x| <1/L;
(b) Series diverges for |x| >1/L;

(c) The test is indeterminate for |x| =1/L. (118)
a Xk+1 a
Ratio test:  lim| 22— —| = |x|lim| 22| =|x|L <1
k—o0 akx k—o0 ak
1 1
= x| < ———==
. |a
lim|—%+L
k—o0 ak

Beyond NST1A f(z) = Zakz"; Z € C hascircle of convergence

k=0
1

Iimk—)oo|ak+1/ak|

7] <

The third and final handout (Chapters 7 & 8) is available from
the Centre for Mathematical Sciences

Wait, if not yet 9:00!
Now Lecture 13: Infinite series
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6. Infinite series Recap of Lecture 13: Infinite series

Recap of Lecture 13: Infinite series

Taylor series
y/\

y=Tf(x)

f (a)

X=a Xx=a+h X

Taylor series

(0= t@+(c-) @+ " @ U )

P p gy (68 gy (xma)
24 120

n+l*

f™(a)
+R

Taylor theorem| gives remainder term

- (X . a)n+1
" (n+1)!

f9 ()

forsome a<{ <x (or x<¢ <a if x<a),
‘ _ ‘n+1
j—

ax| 19 ()|

Roal < (n+1)! e

Need to know how to use Taylor series and Taylor’s theorem, but
not how to derive Taylor’s theorem.

Maclaurin series: Taylor series expanded about x =0.
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6. Infinite series Recap of Lecture 13: Infinite series

If f(x) is infinitely differentiable, and remainder R, goes to zero

as n — oo, can uses an infinite number of terms to produce a [Taylor
power series|:

f(X)= f(a)+(x— a)f(a)+(x a)° f"(a) + (X ) @)+

If f(x) is even then the Power Series will only contain even
powers of X.

If f (x) IS odd then the Power Series will only contain odd powers
of x.

The derivative of an even function is an odd function.

The derivative of an odd function is an even function.

Common Taylor Series

2 3 n 00 n
exp(x)=1+x+X—+X—+ ..... +X—+....: X—,
2 3 n! = n
X2 X3 (_1)n Xn 0 (_l)n Xn
exp(—X)=1-X+———+....+ +....= ,
P=X) = 2! 3 n! nzz(; n!
2 4 6 2n o 2n
X° X' X X X
cosh(X) =1+ —+—+—....+ + .= ,
()= 21 4 6 (2n)! nZi.:(Zn)!
3 5 7 2n+l o 2n+l
sinh(X) = X+ — + 2~ 4+ X 4 X o= <
3 5 7 (2n+1)! “~ (2n+1)!
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6. Infinite series Now Lecture 14: Infinite series

3 5 n 2n+1 e n 2n+l
SINX=X— ot iy D) :Z( 1)"x
3 3l (@n+1) (2n+1)!
2 4 n 2n 0 n 2n
cosx=1—x—+x__... D7 :Z
2! 4 (2n)! — (2n)'

Ratio test shows these series converge VX.

Absolute series: exp(x) for x >0 and cosh x, sinh x VX.

Alternating series: exp(x) for x <0 and cosXx, sinx VX.

Reminder
d . . SIN(X+ oXx) —sin(X
—sinx=lim ( ) (x)
dx 5X—0 OX
_ [im 08 XSIN OX + cos(ox)sin x —sin(x)
_5x—>0 5)(
. sindx
=cos X lim = COS X
Ox—0 5)(
=1
d . COoS(X+ 0X) —cos(x)
—cosx=lim
dx 5x—0 OX
_lim COS XCOSOX —SIN XSIN dX — cos(X)
_5X—>0 5)(
. .S .
=—sinx lim = —Sin X
Ox—0 5)(

=1

The third and final handout (Chapters 7 & 8) is available from the
Centre for Mathematical Sciences — week days only

Wait, if not yet 9:00!
Now Lecture 14: Infinite series
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6. Infinite series Recap of Lecture 14: Infinite series

Recap of Lecture 14: Infinite series

De Moivre’s theorem

S

exp(ig) =1+i0+ 10, ()" (0)"  (10)"  (i0)"
2 T3 T T s
¢ i’ o i0°_o°
RN

=C0S@+isin@

Logarithms : cannot expand In x about x =0. Instead

2 3 4 5 n

In(1+x):x—X—+X——X—+X—+ + (=D 1 X +---,—1<x£1
2 3 4 5
For large X, use Inx——In—_ (1——j=—ln(1—§) as
3
§=—X 1<1when x>l—>|nx_—x +1(X 1) +E(—X_1j +-
X X 2\ X 3\ X

Binomial expansion| for f(x) =1+ x)*, for real «

cﬂa—sz a@w4Xa—2)3

2! 3!
a(a D(ax-2)(x—3)...(a —n+1) <
n!

(1+x)* =1+ ax+

If €N , then valid for any x, but if o ¢ N, then valid only for
—1<x<1.

© Stuart Dalziel (Michaelmas, 2020) —54 -



6. Infinite series Recap of Lecture 14: Infinite series

Compose more complex series from combinations of simpler ones:

series [w x} = series| log(1+X), X | x series {i x}
1-x 1-x
series[ : ,x} = series i,f where & = series[sin x, x]
1+sinXx 1+ &

Composing can be much simpler than determining derivatives
. X2
series|[log(cos x), x] = log| cos(0) |- xtan (0) —Esec2 (0)
_x® sin(0) .\
3! cos® (0)
series[log(cos x), x| = series| log (1+(cosx—1)), x |

= series| log(1+¢&),& |, & =series[cosx—1,X]

Can differentiate and integrate series
series[df /dx, x| = %series[ f(x),x]
series“ f dx,x] =jseries[ f (x),x]dx
F)=A+X) "' =1-x+xX =X+ +(=D)"X"+---

If(x)dx:x—%xz+lx3—%x4+---+(—1)” Lx" +...=In(1+X)

3 n+1
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6. Infinite series Now Lecture 15: Infinite series Integration

Example 62: Power series

Find the power series expansion about x =0 of (2+x) ">,

Write in standard form

Qa2 == (1+12) "2 =L (14 )

2t 2

with y=Jx and a =—

19—

Binomial expansion therefore

2+x)" __1_[1+ay+a(c;—l)yz caa=Da=2)

&8 31

) G 2)(3'—3)...(a “n+l) , +}

X V-

9 = 4

-
—
C

e L[ (xS ED(x), —AEDED (YL
e —\/5{1 2[2]+ 2! (2j+ 31 (2)+

-4 —;><—3>(—z>---<—£(1+2"—2)>(£)"+...
n! 2

3 852 5,8 :| Comuw‘su (3,/ -I<S‘£l
-

+

1
= |1-S+>=——
\/2{ 4 32 128 |
P5- >C >O

ith™a, —.0-as k =0 o wil verge:"

j , 55 { AT L

P asrSe S 45 | 22 D =t 2] Vie Tre o

3) =LA w <2

p. 190
Wait, if not yet 9:00!

Now Lecture 15: Infinite series — Integration
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6. Infinite series Recap of Lecture 15: Infinite series Integration

Recap of Lecture 15: Infinite series — Integration

Newton-Raphson

N

Y y=f(x)

S+ (x=xy) f(x,)
ACE S+ (x—x) (%)

N
Ll

1 X X

=X _f(xo)/f'(xo)

e J (Xn)
F'(x,)

. £"(x.)
" (%)

Quadratic convergence ¢, =3¢ +0(g’) near root

f(x.)=0, where ¢, =X, —X..

Stationary points can cause a problem

\—J X1 X2
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5. Integration Recap of Lecture 15: Infinite series Integration

Recap of Lecture 15: Infinite series — Integration

5. Integration

f
( X) 51 52 53

Riemann sum:| S, = > (x — %) f (&)

i=1

Riemann integral: | f(x) dx = lim {ZNll(xi —x ) f (;)} = lim’s,
If £(x) and g(x) are (Riemann) integr_able in [a,b] then
[T dx=— £ (x) dx
[0 de= [T F () dx+ [ () dx

I:kf (x) dx = kj: f (x) dx, where k is constant

I:[ f(x)+9(x)] dx:j: f(x) dx+j:g(x) dx

Integration is a linear operation (as is differentiation).
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5. Integration

Integrand

Primitive

Recap of Lecture 15: Infinite series Integration

f (x) is the function being integrated.

F (x) is the integral of the integrand: F(x) =J.ax f (u) du.

dF (x)
Fundamental theorem of calculus: = EJ‘ (%)

If F(x)is

primitive:

Infinite nu

dx dx Ja

a primitive of f (x), then G(x)=F(x)+c isalso a
d

SR (x)=5 6(x)=f(x)

X

mber of primitives, differing by an additive constant.

If the function f (x) is integrable for all x> a then the
infinite integral is

provided the limit exists.

[7t 00 dnggpo[j:f (%) dx]

If f(x) issingular at X =X. with a < X. <b, then the
improper integral is defined as

RICLS IELrQ[ [Troods ] £ dx}

provided the limits exist.

If f(X) is discontinuous at X = X. with a < X. <b, then the
integral is

[ foodx=["f(x)ax+ [ (x)dx.
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5. Integration

Common integrals

an n-1
= NX
dx
d 1
—Inx==
dx X

d
&exp(ax)—aexp(ax)

isin(ax) = acos(ax)
dx

i(:os(ax) = —asin(ax)
dx

itan(ax) = asec’(ax)
dx

isinh(ax) = acosh(ax)
dx

icosh(ax) = asinh(ax)
dx

itanh(ax) = asech?®(ax)
dx

Recap of Lecture 15: Infinite series Integration

=

© Stuart Dalziel (Michaelmas, 2020) —60 —

m+1

X

+C, m=-1
m+1

jxmdx =
j}dx: In|x|+c
X
1
Iexp(bx)dx = 6exp(bx)+c
1 .
j cos(bx)dx = Bsm(bx) +C
: 1
Ism(bx) dx = b cos(bx)+c
5 1
j sec” (bx) dx = tan(bx) +
[ cosh(bx)dx = %sinhh(bx) e
: 1
[ sinh(ox) dx = cosh(bx) +c

['sech? (bx) dx = %tanh(bx) e



5. Integration

Recap of Lecture 15: Infinite series Integration

Often use substitutions rather than simply remembering

d/ . 4 !
&(sm (ax))—m
] =
B —-a
o @) s
d _ a
a2 @)=
d,.  _ a
&(S”-]h 1(aX)):m:>
a

%(cosh‘l(ax)) -

Jazx® 1

© Stuart Dalziel (Michaelmas, 2020) —61 -

j dezzsin‘lz+c
Vb —x
[Xx=Dsing]
f X _cost X
V% —x? b
[x=bcosd]
T =t 0
[x=Dbtan @]
_[ ax —sinh X 4¢
VX +b° b
[x=Dbsinh&]
j ax —cosh X 4c
VX —b? b
[x=Dbcosh ]



5. Integration Now Lecture 16: Integration

Special forms
1 pil

d a a—l
&[f(x) |=a —f(x)
p#-1

d f'(x) f'(x)
Sn[f()]= T jf(x) dx =In|f (x)|+c

For I(cos X)" dx, I(sin X)" dx, j(cosh X)" dx, j(sinh X)" dx, etc.,

convert using trig ids to terms involving simpler powers (e.g. COS px
, Sin px, cosh px, sinh px, etc. with 0< p<n, p,neZ) and/or

f'(x) f (x)" then integrate, or use (complex) exponentials/De

Moivre’s theorem.

Wait, if not yet 9:00!
Now Lecture 16: Integration
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5. Integration Recap of Lecture 16: Integration

Recap of Lecture 16: Integration

There is always more than one answer to an indefinite integral as
things can differ by an arbitrary constant. Sometimes, they can look
really quite different (especially if trig functions are involved),
depending on your integration strategy:

Partial fractions

1 1 a p
IX2+de Ix(x+1)dx x+x+1dx aln|x|+ gIn|x+1+c

cither &+ B _ax+D+ () _x(a+pf)+a
X X+l X(x+1) X(x+1)

= a=1 g=-1
or ‘cover-up rule’ if can fully factorise denominator

1 Xx=-1 = ﬂ:il:—l.

X=0 = a=—-72=1,;
0+1 -

Cover-up rule more difficult if repeated root and not recommended.
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5. Integration Recap of Lecture 16: Integration

Substitution

For j dx choose substitution

97 (a) du
Denominator involves | Substitution Comments
a’+ x? X=atan®
(@ —x?) X =asiné Need || <|a
(X2 —a?) X =acoshd Need || >4
(a2 + x%) X =asinhu
a2 —x2 X =atanhu Need || <|a
a2 —x2 X =acothu Need || >|a]
a’—x*=(a+x)(a—x) |Partial fractions
a+bx+cx? or Complete the
Ja-+bx +cx? square
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5. Integration Recap of Lecture 16: Integration
For integrals of trig functions

tan(x/2) =t,

Complex exponentials

Mix of trig and exponential functions can be easiest using complex
exponentials (rather than integrating by parts repeatedly)

e™sinbxdx = Im| |e®™*dx
J | Je

Integration by parts

b . dg b bdf
ja f&dx:[fg]a—ja&gdx

One route to Taylor series

Reduction formulae

Aim for a recurrence relation, often integrating by parts

I Ej:f(x;n)g’(x)dx=[f(x;n)g(x)]z — _f:f’(x;n)g(x)dx

-~
Rewrite in terms of 1, 1,,_4,1,_5...

> |, =®(1,,,1,,,..) and evaluate 1,,1,,...
Often useful for integrands of the form f (x;n)=[ p(x)[ a(x), e.g.

Ix” In x dx
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5. Integration Recap of Lecture 16: Integration

Double factorials
(You only need to know ordinary factorials)
MI=1x2x3x---xm

2x4x6x---xn=2"(m!) n=2m
n!l= _ (2m+1)!

1x3x5x%x---xn n=2m+1
2" (m!)
Odd and even functions
Odd: J‘:jaaf(x):Oif f(x=x,)=—1(x,—X)

Even:j:j;g(x)dx=zj:+ag(x)dx if g(x—X,)=9(X, —X)

More partial fractions

Can do partial fractions using complex domain for factorisation of
denominator (not recommended: too easy to get it wrong!):

X+1 _ X+1 _a b L C
(1=x)(1+x%)  (L=x)(x+i)(x=i) L1-x x+i x-i

1+1 2

x=1 = a:m:§—1
x=——i = bo L Swl b I+l 1
- (i) (Hi-i) =2i(L+i)i o 2(1+i) 2
(i o i+1 i+l 1
- C(1-i)2i 2(i+1) 2

X+1 1 +]/2+]/2

(1—x)(1+x2):1—x X+i x—i

To recover real domain answer, combine last two terms (although
you could choose to integrate the complex partial fractions first!):
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5. Integration Now Lecture 17: Integration

x+1 1 +§(x—i)+§(x+i): 1, X
(1=x)(1+x*) 1-x (x+i)(x=i)  1-x x*+1

Easier to use the naive way!
Integrating complex logarithm

If ze C then j%dz=lnz+c with ceC.

[ dz=[inz] 2 =[inz[.
=In(2e"") — In(3e")
=(In‘2e‘” +i7r)—(ln‘3e‘”
=In2-In3+i(r—n)
=In|-2|-In|-3]

+ i7Z')

Integration in the complex plane is not part of NST1A

Now Lecture 17: Integration
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5. Integration Recap of Lecture 17: Integration

Recap of Lecture 17: Integration

Differentiation by parameter

Three contributions: integrand and the two limits

Integrand depending on parameter f(x;q)

b dl
I(Q+54)=Idf(x;6]+5q)dx ~ [(q)+5qd—q
A i | o o
dl b of y—f(xaq+5q)~f(x,q)+5qaq
y=f(xq)

' 1g)= [ f(xiq)d

v

Note ?_q will generally be a function of x.
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5. Integration Recap of Lecture 17: Integration

Upper limit depending on parameter b(q)

b(q+dq)

I(g+9dq)= J J(x)dx=F(b(g+0q) - F(a)

db dF
(F(b(Q)) + 5qd_qu b(q)]—F(a)
N'[b(] ff(x)dx J‘(q) (x)dx J‘(q) Jdi‘i’f(x)dx

dl
/ ~ 1(9)+56]d—q

dl db dFF

5q——+5q—f(b(q))— +0q——

& 49 dxlsiy | y= f(x:q)

1@ =["f(x)dx = F(b(g) - F(a)

I
|
|
|
|
|
|
|
|
I
|
I
|
|
) S
T rd
|

|

a b
db
b(g+0q)~=b(q)+0qg—
dq
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5. Integration Recap of Lecture 17: Integration

Lower limit depending on parameter a(q)

Hg+5q)=]  f(x)dc=F(b)~F(a(g+59))

a(q+oq)

da dF

~ F(b)— (F(a(q))+5qd—qg J
x=a(q)

I [ [

dl
~1(q)+ 59—
(q) qd

AN

dl da dF
Sqg—=—5qg= = —0g—"—
q n q i f (a(q))=-0q g d

x=a(q)

y=f(xq)

I@)=],, Fx)dr=F(E)~F(a(g)

\ 4

a(q) b
da

alg+oqg)~=a(q)+oq—
dq

Combining
b(q)
(@)= L(j) f (x,0) dx

dl_ b@ of (x;q)

dq a@  oq

X +— f (b(q);q) ——q 2 (a(a);q)
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5. Integration Recap of Lecture 17: Integration
Functions of more than one variable

Covered properly in Lent term

Consider h(x,y)

The jpartial derivative with respect to x is obtained by treating y as
a constant and differentiating what is left

oh _ i h(x+8%,y) —h(x,y)
OX x>0 OX .

Similarly

8_h = ||m h(X, y+5y) - h(X, y)

ay Sy—0 5y

Example: h(x,y) =4-x*+(x—3)y’

oh
— =-2X+Y’,
o y
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5. Integration Recap of Lecture 17: Integration

. dh .
What is = if x=s+1and y=(s*-4)/2°

Could substitute then differentiate:

h(s) =h(x(s), y(s)) =4 =x(s)" +(x(s) —3) ¥ (s)°

2_ 2
_A—(5+1)+(5+1—3 [S ; 4]

=5+25-28°-25° +1s* +1¢°

R A R
/ - \h(s)

@
ds

=3-4s-65° +1s° +3s*
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5. Integration Recap of Lecture 17: Integration

Could use the chain rule for function of more than one variable
h(x,y) =h(x(s), y(s))

oh
— =-2X+Y?,
OX y
oh
—=(2x-1)y,
oy

where x=s+1 and y:(sz—4)/2

= %zl, %zs.
ds ds

th_hox oncy
ds oxds oyds
:(—2x+ y2)><1+((2x—1)y)><s
(24D + (35 -0) a4 (@593 -0)<s

J

~
9 feale2, 3
2_23_232+%52 2-45+55°+S

=3-4s-65° +1s° +3s*
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5. Integration Recap of Lecture 17: Integration
Differentiation by parameter

Define primitive F(x,q) EIX f(u,q)du

= 1(0) = F(b(g),q)—F(a(q).q)
Chain rule
d_oF| do, | _oF| da_oF
49 OXliw@ 4 Aliyqy HKlcaw 9 A,y
T —1(b@)a) g F_y <0
5 : ja—q[f(u,q)]du R GCIL) J‘%[f(u,q)]du
_ rb@ of (x;Q)

db da
dx+ f(b(q);q)——f 1q)—
@ oqg OXF (b(a);q) a0 (a(a);a) a0

In this we have also used

Fundamental theorem: %: f(x,Q)

. oF (x0
Also, taking x constant —=| —| f(u,q)|(du
g % | RICL)

For NST1A, the key is to understand how to use this rather than
derive it
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5. Integration Now Lecture 18: Integrals

Gamma function
'(x)= J.Oooux‘le‘u du

Integrate by parts for integer x >0 or use differentiation of
() = j:e‘“x dx to show relationship with factorials.

(n=D)! n>1

ForneZ, I'(n) = : :
= (") {undeflned otherwise

30

20

10
' (x)
{ ) | | int(x-1)!
-4 qz 2 4 3]

=20

Now Lecture 18: Integrals
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5. Integration Recap of Lecture 18: Integration

Recap of Lecture 18: Integration

Schwarz’s inequality

(jbf (X)g(x) olx)2 s(j:f 2(x) dx)(j:gZ(x) dx)

Riemann integral

1D jb f(x) dx= lim {i(xi —Xi4) f (éﬁ)}
2D ”Ah(x, y) dA= m{ih(xi,yi)(m}

[*[*hx y)dydx = b[ ["h(x,y) dy}dx
~ :nllm{i (x.9,) 5y}dx

= Mllil\lrﬂmi{ih()?i,yj)5y}5x

i=l| j=1
_ L" j:h(x, y)dxdy

Here, we choose X, Y; to lie within the corresponding 6A=5x5y
elements. For example, X, =a+(1—3)oX, ¥, =b+(]—3)oy and
ox=(0b-a)/M, dy=(d—c)/N.
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5. Integration Recap of Lecture 18: Integration

More complex domains. If R is the region defined by
Yo(X) <y <yi(x) for x, <x<x

N

»(x)

Yo (x)

v

JI.neyyda=[" " "nox yydydx= 100 o

Yo (X)
1(X)
where 10)=[ " h(x,y)dy =Y (x,¥,(x)) =Y (X Yo (X))
with Y (X, y) :Jyh(x,u)du the primitive of h(X,y) with respect to
y (0Y/dy =h(x,y)).
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5. Integration Now Lecture 19: Integration

Alternatively, we may be able to define R as x,(y) <x<x(y) for
YoSY=Y,

M

Yo

\ 4

JI.neoyyda=[" " nex y)dxay = [ (y)dy
where J(y) = "h(x y)dx = X (4 (¥), Y) = X (), )

with X (X,y) = j h(s,y)ds the primitive of h(X,y) with respect to
X (OX/ox=h(x,y)).

3D ”j (x,y,2)d {Zp(x,,y,,z,)é\/}

Now Lecture 19: Integration
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5. Integration Recap of Lecture 19: Integration

Recap of Lecture 19: Integration

Regions
If region convex

N

¥, (x) ¢

R

Vo(X)

s Yo
7

Xo X

Jl.neyyda=[" " “hocyydyax= [ hix, y)dxdy

If region not simply convex, this may be more difficult

AN N
»(x) x,(»)
"N
V2 A
KS/ S
Yo(X) x ()
Yo

[[.hexyyda= " hx, y)dy dx

X0¥ Yo(X)

v

\ 4

_[” 'Xl(y)h(x, y) dx dy
7 ¥od % (y)
ey % (Y) Y1 X ()
+ ] Xo(y)h(x, y)dxdy + j . j ., Nx, y)dxdy
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5. Integration Recap of Lecture 19: Integration

Separable integrands
If integrands separable f(X,y,z)=a(x)b(y)c(z) and limits constant

Tt oy, ydedydz= [ [ a(ab(y)e(@) dxdy dz

_ [ [o(2) dz}[ ["b(y) dy}[ a0 dx}

Polar integrals

Circular polar: dA=rdrdé
HAf(x,y)dAzng f(r,0)rdrdo
Cylindrical polar: dV =rdrdédz

m\, g(xy,z)dv =L J.g'fr g(r,6,z)rdrdodz

Spherical polar: ~ dV =r?singdrdédg
mv g(x,y,z)dVv :LL’L g(r,0,¢)r’sinddrdgdg
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5. Integration Recap of Lecture 19: Integration

Strategy

1 Choose the coordinate system taking into account the shape of the
area A (or volume V) and the form of the integrand f(X,y) (or

g(x,y,2)) to make the calculation as simple as possible;
2 Determine limits, e.g. y,(X) <y <y, (X) and x, < X< X, or
O<r<aand 0<6<7x/2 (three pairs of limits if volume);

3 Rewrite the integrals (including integrand) in terms of the selected
coordinate system;

4 Look to see if the integrand is separable and the limits
independent of each other;

5 Decide on order in which to integrate;

6 Integrate with respect to one variable at a time, working our way
outward through all variables. Each integration eliminates one of
the variables.
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5. Integration Recap of Lecture 19: Integration

Gaussian integral
a 2
=J e dx
—a
- 72
a 2
Ia2= e dx

—a

— j e* dx Jaae‘yz dy}

:IX_a jy_a ) ) dy dx

2N
N .

[ [errardo<iz=[" [ ayax<[" jfae‘fzr drdo

r (2
Ja@)=["["e" rdrd.9<7z(f 1)a* e
Zr-a ~ max value
Integral within annulus Area of annulus inannulus

As a—>x, €% 50, ae® -0, a% ™ -0 = J(a) >0

s12=[ e ayax o | [ do ] [Terrar)

© Stuart Dalziel (Michaelmas, 2020) —82 -



5. Integration Now Lecture 20: Integration Probability theory

12 =fgzﬂ do [ “re™dr

=7 r=0
_1a ]
2467
=T
= |, =7
Error function
Error function: erf ije < dx; limerf(z)=1.
\/;O 2o
Error function
y = erf(x)
10t
05¢
-4 -2 2 4 .
— _5_
-1.0f
4 6 —1)" x2"
exp(—x?) =1-x 2 XX +L+--
21 3l n!
erf(z) _Z e dx
\/;. 0
~z 4 6 -1 " in
:i ]__X2_|_X__X_+...+—( ) +...|dX
Jrdo 21 3l n!

37 520 7(3Y (2n+1)(nY

5 7 _1\" 52n+l
= 2 l:Z_EZS_F Z — Z _|_..._|_( 1) z +:|

Now Lecture 20: Integration — Probability theory
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8. Probability theory Lecture 20: Integration Probability theory

Lecture 20: Integration — Probability theory

If you encounter the Gaussian integral while answering a question
In integration, you can simply quote or make use the result unless
you are told explicitly to show/prove that it is true:

O_Oe‘r2 dr =7

Lecture 20: Integration — Probability theory

8. Probability theory

Sample spacef: Set of all possible outcomes.

Event: Subset of outcomes.

Ven diagram|: A graphical representation of events

%

y

If S ={x,%,,%s,--+, X} is the sample space and A={s;,s;,---,S,} an

event (defined by a list outcomes), then all members of A must be
containin S.

S

Empty set: ={}

Subset: AcS; ScS: JcS.

Superset: S o A

Intersection; AN B The outcomes common to both events
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8. Probability theory Lecture 20: Integration Probability theory

Union: Aw B The set of outcomes found in one or both of A, B.

Complement; A Outcomes notinevent A. A=S—A. A=A.

Mutually exclusive; ANB=a; AnA=; Only one event can
occur.

Commutative: AuUB=BUA

ANnB=BnA
Associative; (AuB)UC=AU(BUC);

(AnB)NC=An(BNC)

Distribution

An(BuUC)=(AnB)U(ANC)

AU(BNC)=(AUB)N(AUC)

Negation

ANB=AuB, AnB=AuUB,
AuUB=ANnB, AuB=ANB.

Related to Boolean algebra (+=or, -=and)

A-B=A+B: A+B=A.
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8. Probability theory Now Lecture 21: Probability theory

Probability: for N experiments producing n, occurrences of event

- : N,
A, the probability of A is P(A)=lim 2. The expected number of

N —w0

occurrences for N experimentsis N, =N P(A).

If all the possible outcomes in sample space S ={X;,X,,Xs,**, X}
have the same probability, and event Ac S, then P(A)= %ESA;'
Sample space P(S)=1
Empty set P(Z)=0
Event 0<P(A)<1

P(AnA)=0

P(AUA)=1

P(A)=1-P(A)

P(AUB)=P(A)+P(B)-P(ANB)

P(AUBUC)=P(A)+P(B)+P(C)
—P(Am B)—P(BmC)—P(CmA)
+P(ANBNC)

We can get the last of these from

(
=P(AUB)+P(C)- (( UB)NC)
=P(A)+P(B)-P(AnB)+P(C)-P((AnC)u(BNC))
=P(A)+P(B)+P(C)-P(ANB)- (P(AmC)+P(BmC) P((AnC)n(BNC)))
=P(A)+P(B)+P(C)-P(ANB)-P(ANC)-P(BNC)+P(ANBNC)

Now Lecture 21: Probability theory
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8. Probability theory Lecture 21: Probability theory

Lecture 21: Probability theory

Conditional probability: The probability that B occurs, given that
A has already occurred is

P(B|A)= %

Often said as “the probability of B given A”.
Rearranging gives the probability of both occuring
= P(AnB)=P(A)P(B|A).

If the events are independent, then event A has no bearing on the
outcome of event B and

P(AmB)
P(B|A)=———=P(B
= P(AnB)=P(A)P(B|A)=P(A)P(B).
In general, we must consider the possibility that the events are not
independent.
Similarly P(A|B):%
= P(AnB)=P(B)P(A|B)
= P(AmB)=P(B)P(A|B):P(A)P(B|A)
Bayes’ Theorem: P(A|B)= P(AIP(B|A) ,
P(B)
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Since

P(B)=P(BN(AUA))=P((BNA)U(BNA))

=P(BNA)+P(BNA)-P(BNANA)
=P(A)P(B|A)+P(A)P(B| A)

P(A|B) = P(A)P(B|A)
P(B|A)P(A) +P(B|AP(A)’

Can extend ideas:

P(ANANA)=P(A)P(AIA)P(AIANA)

Note: We are multiplying the conditional probabilities together. If
the events are independent, then

P(A)P(AIA)P(ATANA)=P(A)P(A)P(A),

but if they are not independent, then the two products are different.

Permutations: Arranging things where order matters. The number
of ways of selecting r items from a set of n, where the order
matters:

"P=_P EP(I‘I,F)E

Now Lecture 22: Probability theory
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Lecture 22: Probability theory

Permutations

Order matters

Combinations

Order does not matter.

(n—r)!

(rr\j “(n —nr!)!r! - an:r

Binary outcomes: an event either happens or it does not happen.

The selected permutation "P, =

can be rearranged r! ways

"C.=C EC(n,r)

r n-=r

Combinations| < binomial coefficient

If P(A) = p, then for n independent experiments,
P(A exactly r times out of n)="C,p"(1-p)""

iIf it does not matter which of the n experiments yield A.

n! n!
(n—r)irt sir!
arranging n=r+s objects of types R and S if we cannot
distinguish between different objects of the same type.

Can view "C. =

r

as the number of ways of
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Arrangements

Generalise the binomial arrangements to arrangements of more
different types of object.

I, indistinguishable objects of class R,,
r, indistinguishable objects of class R,,

r. indistinguishable objects of class R,
giving n=r,+r, +---+ 1, =X r objects total. These be arranged

n! B (Z:(:lri)!
Linlr T ()

distinguishable ways.

Care about the order of everything: n!

" n

(n=r)!

Don’t care about the order of n—r not selected:

r

Don’t care about the order of r selected and n—r not selected

n!
= ="C
(n—r)!r! '

Care about the order of r+s+t butnot u+v+w;

(r+s+t+u+v+w)!
ulviw!
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Discrete probability distributions

Let X be a random variable. This is chosen from the set
{X5, X.s %, -+, X, } through a random process with corresponding

probabilities {p,, P, P, Poi}-
X €%, X1 X, X1}

Only discrete values of X are permitted.

Probability function;;

pi ifX:Xi
P(X=x)="f(x)=
(X=x)=f(x) {0 if X = X,
n-1
Requires 2t0)= 2. f(x=1
i=0 Xe{Xo X1+ %o g }

Cumulative probability function;:

P(X<x)=F(x)=>_ f(x),

X <X

Note F(x)=0 in the limit x ——0, and F(x)=1in the limit

X —> 00,
f(x) A F(x) A
1_ H
] ‘—5
3 ¢ 1
8 ]
2 4 _ e
g | i
1 - 2 -
8 8_
! > = | T I
0 1 2 3 0 1 2 3
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a5 UNIVERSITY OF

m ® CAMBRIDGE Dashboard . Courses ™ Categories ™ Course History Help ™ = About Moodle ~

Questionnaires

(1{ ﬂ Michaelmas Term 2nd Week Questionnaire

The Teaching Committee for Mathematics in the Natural Sciences Tripos would be very grateful if you could complete this
questionnaire about the first two weeks of lectures. It is very short - it shouldn't take more than a couple of minutes.

]
|
(4]
- In order for it to be useful, we need as many of you as possible to participate.
The questionnaire will close at the end of the day on Tuesday 27 October.
Your submission is anonymous, but the usual rules of courtesy apply.
% | Michaelmas 2020 end of term questionnaire

Please complete this questionnaire about your lectures this term. Thank you.

] 1/Vectors and Co-ordinate Systems
[]2/Complex Numbers

(] 3/Calculus

(] 4/Probability

[]5/Ordinary Differential Equations
[]6/Double and Triple Integrals
[]7/Vector Calculus

[ ] 8/Matrices

(] 9/Fourier Series

Now Lecture 23: Probability
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Reap of Lecture 23: Probability

The jmean), expected value| or expectation value of a discrete
random variable is

ILI:XZE[X]:iXipi :ixif(xi);
and the variance
o =E[(X - u) 1=E[ X? |- 4/
:Zn:Xizf(Xi) {ZX]‘(X)}
Relationships
E[aX]=aE[X], E[(aX)‘]=a’E[X?],
E[X +Y]=E[X]+E[Y]
Elg001= Y, 900) ().

So
E[(X +Y)]=E[X*]+2E[XY]+E[Y?]

= ch. =0s +(73+ZCOV(X,Y)

where the |covariance™

cov(X,Y)=E[XY]-E[X]E[Y]=E[XY]- s st,

Is a measure of how well [correlated the random variables are.

*You do not need to know about the covariance. If the events are
independent, then cov(X,Y )=0.
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Binomial distribution

For n discrete, independent events:

fr)="C.p"l—p)"", 0<r<n

with mean u=E(X) =Zn: rl "C,p'-p)""|=np

r=0
and variance o° = E(XZ)—[E(X)]2 =np(1-p)
Mean increases as n, standard deviation increases as \/ﬁ

0.25
0.20
0.15
0.10
0.05

p=04; n=8

0.14
0.12 |
0.10 AN p=04; n=32
0.08 .

0.06
0.04
0.02

5 10 15 20 25 30
0.07
0.06 1l
0.05 - p=04; n=128
0.04 i

0.03

0.02
0.01

20 40 60 80 100 120
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For probability, it is useful to remember
(p+a)’ =p"+np"'q+---+npq" —1+q
NN A~ wian-i XN n! k -k
_Zi=o Cip q _Zkzo(n—k)!k! P9

2 3 k k
X X X o X
e"=x+—+—+---+—+---=§ —
2! 3! k! =Lk

Poisson distribution
Has no upper limit on the (discrete) outcome:

A" exp(=A4)

P(X=r)= "

but need finite mean x = A; variance o =1

Poisson distribution is the limit of the binomial distribution when
n—oo, p— 0 but with np remaining finite.

Mean increases as A, standard deviation increases as A
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Average daily births, England and Wales, 1995 to 2014

Number of Births Rank
Jan Feb Mar Apr May  June July Aug Sept Qct Nov Dec

e e R =2 T ¥, B - VS R N

‘ .
v =
- -
- —
» —
21 -
- m . =
- I =
. T .
25 -
- .
27 I
- I

-

-

-

[
1,350 1,800 ,900
1,580 1,850 1,980

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeat
hsandmarriages/livebirths/articles/howpopularisyourbirthday/2015-
12-18

78]
[=]
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8. Probability theory Reap of Lecture 23: Probability

Which Birth Months Are Most Common Around the World?

Months ranked by average number of live births per day, from highest to lowest (2000 - 2015)

Latitude Country AN FEB MAR APR MAY JUN UL AUG SEP ocT NOV DEC Rank
Polar Zone Sesiad 3
90°N-66.5°N Iceland

North Temperate
Zone 3
66.5°N-23.5°N Bosnia and Herzegovina

Mexico
China, Hong Kong SAR
China, Macao SAR

Turks and Caicos Istands
Cuba

Cayman islands

British Virgin Islands

US Virgin Islands

Tropical Zone Curagao
235°N-235°S Trinidad and Tobago

Equator (0°) Seychelles.

South Temperate UC"“IE""
New Zealand

e
235°5-665°S

’.x
visme

https://visme.co/blog/most-common-birthday/
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Reap of Lecture 23: Probability

2000 1

1800+

1600 A

Average daily number of live births

1400

1200

7

A

-=\

\ e
™~ = Sunday
= === Hol

&

1993 1997 2001 2005

Year of birth

1981 1985 1989

2009 2013

Significance, Volume: 14, Issue: 1, Pages: 6-7, First published: 14
February 2017, DOI: (10.1111/j.1740-9713.2017.00992.x)

8 ~
Monday-Friday

6
£ Average: 4.2%
38 >
Sat
Y Saturday and Sunday

Total
2 kL
0 ' ' L l L 'l l L 'l l L i l L L l l L L l
6 a.m. 9am. Noon 3 p.m. 6p.m.  9pm. Midnight 3am.
Hour

NOTES: The differences in the percent distributions are statistically significant. Access data table for Figure 1 at:

http:/fwww.cdc.govinchs/data/databriefs/db_200_table pdf#1.
SOURCE: CDC/NCHS, National Vital Statistics System.
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Continuous probability distributions

Random variable X e R

Probability density function| (pdf): f (x) such that

r:of(x)dx:l

P(x< X <x+dx)= f(x)dx in limit dx > 0,

SO P(aSXS,B)zLﬂf(x)dx.

Cumulative probability function| (cpf): F(x) is

F)=P(X <x)=[" f(x)dx.

Primitive of f(x) with lim F(x)=0, limF(x)=1.

X—>—0

dF(x)
dx

= f(x)
Mean: y:E(X)=jjo xf () dx

2

Variance: o® = E[ X?]-E[X ]’ = [* x* () dx-“_fo Xf (X) dx]
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8. Probability theory Now Lecture 24: Probability theory

Uniform distribution

1 when a < x< f
f(X)=< -«
0 otherwise .
0 if X<a
P(X <x)={[ X _X=@ ¢ cx<p
« B-a -
1 if x> 4.

Now Lecture 24: Probability theory
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Summary of Lecture 24: Probability theory

Normal distribution or Gaussian distribution| with mean « and
variance o, N (,u, 02):

_ 1 C(x=p)’
f(x)_amexp{ = }

0,

NOL): T

You will learn how to evaluate the Gaussian integral in Lent term:

2

Let I =I_O:Oe dx.
. TP 2 2
5 B o X _ o X w Y
Then ! —Dwe dx} D“’e dx}“me dy}
=] _we “e ™V dxdy = j LO dxdy

Express x=rcosé and y =rsiné then dxdy =rdrdé and

_ jjﬂjowe‘rz rdrdd = U_’; dé’J U:e‘rzrdr}

o0

_ 2”.[: re” dr= 27{—#1 —7

0

Hence | = Iw exp(=x?) dx =7
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You can evaluate Jm xexp(—x?) dx, but there is no need since the
integrand is odd and so the result is zero.

Jz

Use integration by parts to evaluate I_OO x2 exp(—x?) dx = 7” using

(x)(xe‘xz) and the Gaussian integral.

Cannot explicitly evaluate cumulative probability function,

F)=— [ exp{—w}dy,

oN2m 7 20

using elementary functions.

Generally want to convert N ( m 02) into N (0,1) using the

substitution y = X—H Then F(x)— CD(X_—“j =0(y)
O

o}

10

08

Symmetry shows that @(y)=1-®(-y).
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Central limit theorem| states that if we take means over n samples

N 1E : .
taken from some distribution, X = —in , then this mean will be
i=0
approximately normally distributed about the population mean as n
becomes large.

Binomial convergence on Gaussian (p=1/2)

1.0e
[ (]
° 08 °
®on = 2
® 06! ° n = 4
®n - 8
® ® ®n - 16
® 04} ° n = 32
* . n = o4
Gaussian
0.2+
[} [}
] L.}
[ 2
8 ‘ 8
-2 -1 1 2
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