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1. Vectors 

Recap of Lecture 1: Vectors 

Scalar: Value; generally in , but could be in  

Vector: Magnitude and direction 

Displacement vector: relative position 

Position vector: position relative to origin 

This part of the course concentrates on physical space 

Euclidian space  can use Cartesian coordinates 

3D Euclidian space is 
3
 - three real vector components  

[There will be some discussion of other bases (e.g. 
n
 eigenvector 

basis) in Easter term, but more (e.g. Hilbert space 
n
) in Part IB.] 

u u u   u u  

Magnitude: u  

Unit vector: ˆ 
u

u
u

 

Vector addition commutative:   a b b a . 

Vector addition associative: ( ) ( )    a b c a b c  

Vector subtraction:          a b a b b a   

Multiplication by scalar distributive: ( )    a b a b  
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 a a    ***Notes (p.5) were missing the absolute value on   

 

 

Kinematics: mathematics of motion:  

 
2

20 0

)
lim li

( (
m

)

t t

tt t

t

d d

dt t dt  

 
 


   


 

u u u u
a

r
u r  

 

Coordinate axes: effect vector components – the basis of the vector 

space 

Need to span the space 

Coordinate system has axes and origin. 

Unit vectors for Cartesian coordinates: ˆ ˆ ˆ i j k  or ˆ ˆ ˆ x y z  or , ,x y ze e e  

Right-handed system  

Now Lecture 2: Vectors 
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Recap of Lecture 2: Vectors 

Basis vectors need not be orthogonal (and need not be unit length), 

but this can make vector algebra and vector calculus harder. 

Vector length: 2 2 2x y z  r  

Vector equation of line described by r  through points with position 

vectors a  and b :  

    r a b a ,   . 

 

A 

B 

P 

O 

a 

b 

r 

 

 ˆˆ  r a t  

Component equation of a straight line: 
yx z

x x y y z z

y ax a z a

b a b a b a

 
 

  
 

What happens if, for example, x xa b ? 

What if x xa b , y ya b  and z za b ? 

Scalar product, dot product or inner product:  

 cos   a b a b  

For orthonormal basis (basis vectors orthogonal and unit length) 

 x x y y z za b a b a b   a b  

(Ideas can be extended to higher dimensional or infinite dimensional 

spaces) 
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Scalar product commutative:   a b b a  

Scalar product distributive: ( )     a b c a b a c  

Scalar product of vector with itself: 
22   a a a a  

Scalar product zero if vectors orthogonal 

If scalar product zero then either vectors orthogonal or at least one 

has zero length 

Scalar product, dot product or inner product:  

 cos x x y y z za b a b a b       a b a b  

 

Orthonormal: Unit vectors normal to each other. 

Vector equation of a plane: ˆ( ) 0  r a n  or ˆ p r n  

 

n̂  

a  r  

O  

P  r a  

p  

n̂  

 

For ˆ( ) 0  r a n , then ˆ( ) ( ) 0,   r a n , but for ˆ p r n

need to stick with unit normal and agree which unit normal. 

Direction cosines: , ,l m n  in ˆ lx my nz p    r n  

Note: 2 2 2 1ml n    since ˆ 1n   

 cos , cos , cosx y zl m n      

Now Lecture 3: Vectors 
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Recap of Lecture 3: Vectors 

Equation of a plane: ( ) ( )     r a b a c a , ,    

 

a  r  

O  

P  r a  

b  

c  

A  

B  

C  

b a  

c a  

 

Can use b a and c a as basis for points on the plane; in that 2D 

basis, ( , )  r a  

  

 



1. Vectors  Recap of Lecture 3: Vectors 

© Stuart Dalziel (Michaelmas, 2020)  7  

Equation for a sphere:  r a  

Equation for a cylinder:  ˆ ˆ R  r r n n  

Equation for a cone:   ˆ cos   r q n r q  

 

 

Vector or cross product    ˆsin a b a b n  

 The unit normal n̂  is perpendicular to both a  and b . 

 Its direction is determined by the right-hand rule. 

For right-handed orthonormal coordinate system 

 ˆ ˆ ˆ ˆ ˆ ˆ     i i j j k k 0 . (21) 

 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, ,    i j k j k i k i j (22) 

      ˆ ˆ ˆ
y z z y z x x z x y y xa b a b a b a b a b a b      a b i j k  

 

 

  

a  

b  

a b  

 

 

 



1. Vectors  Recap of Lecture 3: Vectors 

© Stuart Dalziel (Michaelmas, 2020)  8  

Vector product anti-commutative:    a b b a  

Vector product distributive: ( )     a b c a b a c  

Vector product not associative:  ( )    a b c a b c  

Vector product using determinants  

 Laplace expansion: 

 

     

ˆˆ

ˆ ˆ ˆ

ˆ

ˆˆ ˆ

x y z

x y z

y z x y

y

x z

x z

x z z x

x y

x y

z

y z z y y x

a a

b
a a a

b b

a a

b b

a b a

b

a b a b

a a

b

a b

b

b

b

b a

    

   

ki

ki

a j

j

i j k

b
 

 Rule of Sarrus 

 

     

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ

ˆ

x y z

x y z

x y z z yy z x xz x

x y z

z y y xa a a a b a ba a a

b

a b a

bb b b

a

b

b ba b    

i j k

i kj

i j k

 

 
     

ˆ

ˆ

ˆ ˆ ˆˆ ˆ

ˆ ˆ

ˆ

ˆˆ y z

y z

y z

x y z

x y

x

z

x y z

z x

z x

z x x z

x

y

x y

x

z

x

z

y y y

y

a aa a

b b

a b a

b
a a

b

a b a

a a

b b

a b a

a a

b

a

b b

a

b bb b

b b

  

   

i

i

i j k

j

k

k

k

j

j

i

 

Each term has one thing from the first row ( î , ĵ  or k̂ ), one from the 

second row (an element of a ) and one from the third row (an 

element of b).  

Each term also has one thing from each column: something in the x  

direction, something in the y  direction and something in the z  

direction. 
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If the xyzxyz  cyclic order is preserved with things in row order, 

then the sign is positive. If it is not preserved, then the sign is 

negative. 

For example, ˆ z xa bj  preserves the cyclic order, and so this term is 

positive. In contrast, ˆ z ya bi  reverses the cyclic order, and so has a 

negative sign. 

As multiplication by scalars is commutative, switching to ˆ
z xa bi  may 

appear to reverse the cyclic order, but as the cyclic order of the rows 

is also reversed, then it still has a positive sign. 

 

For this part of the course, you do not need to know what a matrix 

or determinant is: you only need to be able to determine the vector 

product 
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In the NST1B maths: 

 ijk j ka b c a b  

Einstein notation implies summation over repeated indices so 

 
3 3

1 1

ijk j k ijk

k

i j k

j

a b a bc  
 

  . 

Here, 

 

1 if  is an even permutation of 123

1 if  is an odd permutation of 123

0 if  or  or 

ijk

ijk

ijk

i j j k k i






 
   

 

is the Levi-Civita symbol.  

Even permutations: 123, 231, 312 

Odd permutations: 321, 213, 132 

0 permutations 123  123       1 

 

1 permutation 123  321     1  

 

2 permutations 321  312       1 

 

Note: The Levi-Civita symbol is not a tensor as it does not obey the 

tensor transformation rules. 

 

Now Lecture 4: Vectors  
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Recap of Lecture 4: Vectors 

  

Lines and planes 

Vector equation of line passing through points given by a  and b : 

  

A 

B 

P 

O 

a 

b 

r 

 

       r a b a 0  

  r a  is parallel to b a  
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a  r  

O  

P  r a  

b  

c  

A  

B  

C  

b a  

c a  

 

Vector equation of plane through points given by a , b  and c  

       0       r a b a c a  

Shortest distances 

Shortest distance to line: 
   

d
  




q a b a

b a
 

  

Q 

q A 

B 

O 

a 

b 

q – a  R 

b – a  

d 
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Shortest distance to plane:   ˆd   p a n  

  

  

a  

p  

O  

P  

p a  

d  n̂  

A  
Q  

 

 

 

Shortest distance between two lines 
   

d
  




b a t u

t u
 

  

q 

A 

B 

Q 

O 

a 

b 

P 

d 

t  

u  

p 

L1 

L2 

t  

u  

t u  

 

A line in direction t  passing through a point given by position 

vector a  intersects with one with direction u  passing through a 

point given by position vector b  intersects if the scalar triple 

product vanishes:     0   b a t u . 
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Scalar triple product 

 
       

           

a b c b c a c a b

a c b b a c c b a
 

cyclic order (123, 231, 312) maintain sign, 

anticyclic order (321, 213, 132) swap sign 

even permutations retain sign, odd permutations swap sign 

 

x y z

x y z

x y z

a a a

b b b

c c c

  a b c  

 

( )

( )

( )

( )

( )

cos

cos

cos sin

cos sin

cos si

ˆsin

n

a b c

a b c

a b c bc

b c a ca

c a b ab

bc 



 

 

 











  











a

b

b c a

a

a b c

a b c

a b

c

c

b c

n

 

What is the angle between two vectors? 

 
1cos  


a b

a b
 

 
1sin  


a b

a b
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Volume of parallelepiped formed by vectors , ,a b c  is V   a b c  

 
b  

c  

a  

b c  

  

h  

 

Vector triple product 

 ( ) ( ) ( )     a b c a c b a b c  

normal to a  and normal to the normal to both b  and c  

  

 

 

 ( ) ( ) ( )     a b c c a b c b a  

Einstein: ( ) ijk klm j l m ira b c    r a b c  

 ( ) ijk jlm m il ka b c s    s a b c  
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identity ijk klm il jm im jl        

 

( )

( ) ( )

 

   

a b c

a c b a b c

 

 

( )

( ) ( )

 

   

a b c

c a b c b a

 

 

 

Provided 0  a b c , then , ,a b c  span 3D space and any other 

vector can be written as a linear combination of , ,a b c : 

      
a b cd d d  

       


 

d a b c

d b c a d c a b d a b c

a b c

 

 ad
 


 

d b c

a b c
,  

 bd
 


 

d c a

a b c
, 

 cd
 


 

d a b

a b c
. 

How much of a  is not in plane of ,b c?  ( )a b c  

How much of d  is not in plane of ,b c?  ( )d b c  

This must be captured by the parts of a  that are orthogonal to plane 

of ,b c  

 ad
 


 

d b c

a b c
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Similarly 

 bd
   

 
   

d c a d c a

a b c b c a
, 

 cd
   

 
   

d a b d a b

a b c c a b
. 

  

 ad
 

 


a

d c

b

b

c
 

 

Election of class representative? 
“The Faculty Board of Mathematics asked DAMTP to set up a Staff-

Student Committee for Mathematics in the Natural Sciences to 

provide an opportunity for discussion of matters relating to the 

courses. The Committee has four staff and three student members, 

the latter being drawn from the A and B courses in Part IA and from 

the Part IB course.” 

Now Lecture 5: Vectors 
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Recap of Lecture 5: Vectors 

Units of vectors 

Note: if , ,a b c all have the dimensions of length, then  

1. , ,a b c  all have dimensions of length; 

2. a b  is a scalar with dimensions of area (length-squared); 

3. b c is a vector with dimensions of area (length-squared); 

4.  a b c is a scalar with dimensions of volume (length-cubed); 

5.   a b c  is a vector with dimensions of volume (length-

cubed); 

6. Normalising a vector (so it has unit length) removes its 

dimensions: ˆ 
a

n
a

 does not have physical dimensions; 

7. ˆb n  has the same dimensions as b  (i.e. physical length). 
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Vector area 

For a plane of area A 

 ˆAS n. 

Lent term: ˆ
S S

dA dS n   

 surface integrals ˆ( ) ( ) ( )
S S

f f dA x dS x n x  

Has dimensions of area A but with a direction 

 

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( )

,cos ,co( s )

( )

cos x

y

y z

x zS S S

A

A   

  

       



S i j k

i n i j n j k n k  

  

n̂  

x  

y  

z  

zS  

xS  A  

 

Components of S  are the projections of the area onto the planes 

normal to the axes. 

If ˆAS n then ˆ ˆA A A  S n n ; if 0A  then AS  

Vector area of a closed volume is zero: S 0  

For an open surface/shell (there is only one ‘side’), then S 0  
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Vector basis 

Basis: a system of vectors used to represent a position in a space. 

1. Vectors must be linearly independent 

 1 1 2 2 1 2 0N N N                e e e 0  (42) 

2. Number of vectors must equal the dimensions of the space 

Linear independence means  r a r  has the unique solution a 0 ; 

 a unique set of coefficients 1 2, , , N    for every point 

 1 1 2 2 N N      r e e e  (43) 

 

1 1 11

2 2 22
0

p q N

p q N

Np Nq NNN

e e e

e e e

e e e

 

e

e

e

 

In 3D, 1 2 3 0 e e e  

Orthogonal basis: A basis in which all the basis vectors are 

orthogonal 

Orthonormal basis: An orthogonal basis in which the basis vectors 

all have unit length. 

Scalar product if orthonormal basis: 
1

N

i i

i

a b


  a b  

Reciprocal basis – related to the inverse of a matrix comprising the 

basis vectors. Basis vectors , ,a b c  has the reciprocal basis 

 , ,
  

  
    

b c a
A B C

a b c b

a

a

b

c c a

c

b
 

so that if     r a b c , then , ,       A r B r C r . 
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 ad
 

 


a

d c

b

b

c
 

Easter term: These ideas are related to the linear algebra of matrices. 

If M  is a matrix, then if M  is orthogonal 1 T M M , then 
T M M I . If M  is not orthogonal and not singular, then 1 M M I . 

In each case, the rows of M  may be considered as the basis vectors, 

and the rows of TM  or 1M  are the inverse basis. 
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Cylindrical polar coordinates:  , ,r z  

 cosx r  ,  siny r  ,  z z  

 0r   and 0 2    (or      ) 

Cylindrical polar coordinates:  , ,r z  - right-handed, orthogonal 

 ˆ ˆ ˆcos sinr r z   r i j k  

Basis vectors 

 

ˆ ˆˆ cos sin ,

ˆ ˆˆ sin cos ,

ˆˆ .

r

z



 

 

 

  



e i j

e i j

e k

 

Self-isolation? 

If you have been asked to self-isolate and do not have the lecture 

notes, please e-mail your Director of Studies (and cc me), telling 

them of your situation so we can get the notes to you. 

Election of class representative? 
“The Faculty Board of Mathematics asked DAMTP to set up a Staff-

Student Committee for Mathematics in the Natural Sciences to 

provide an opportunity for discussion of matters relating to the 

courses. The Committee has four staff and three student members, 

the latter being drawn from the A and B courses in Part IA and from 

the Part IB course.” 

Self-nominate by Thursday 22 Oct 

Make your ‘campaign speech’ on Saturday 25 Oct 

Election Tuesday 27 Oct 

Now Lecture 6: Vectors  Complex numbers 
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Recap of Lecture 6: Vectors  Complex numbers 

Cylindrical polar coordinates 

Basis vectors 

 

ˆ ˆˆ cos sin ,

ˆ ˆˆ sin cos ,

ˆˆ .

r

z



 

 

 

  



e i j

e i j

e k

 

Unit length: ˆ ˆ ˆ ˆ ˆ ˆ 1r r z z      e e e e e e  

Orthogonal: ˆ ˆ ˆ ˆ ˆ ˆ 0r z z r      e e e e e e  

The vector ˆ
e  is the direction a point would move for a small 

increase in   (for ,r z const ). It has unit length (not units of 

radians). 

 ˆ ˆr z r zr e e ,   
2 2r z  r  

Note that  and ˆe  depend on   and the basis changes depending 

on your location. 

Important: Vectors have a direction and magnitude, but not a 

position. However, using the basis for polar coordinates requires a 

knowledge of your position and that you change basis if your 

position changes. This can rapidly lead to confusion! For vector 

algebra, it is far safer to compute things using a fixed Cartesian 

basis. 

 

Plane polar (or circular polar) coordinates:  ,r   

Plane polar coordinates: cylindrical polar without z . 

ˆ
re
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Spherical polar coordinates:  , ,r    

  

  

  

r  

x  

y  

z  

Q  

re  

e  

e  
P  

O  

  

 radius 0r  , 2 2 2r x y z    

 polar or inclination angle 0    , 
1cos

z

r
   

 azimuthal angle 0 2   , 
1tan

y

x
   

Think about which quadrant for  ! 

 

sin cos ,

sin sin ,

cos

x r

y r

z r

 

 









 

 ˆ ˆ ˆsin cos sin sin cosr r r      r i j k  

 

ˆ ˆ ˆˆ sin (cos sin ) cos ,

ˆ ˆ ˆˆ cos (cos sin ) sin ,

ˆ ˆsin cos .ˆ

r





   

   

 

  

  

  

e i j k

e i j k

i je

 

 ˆr rr e  

ˆ
re  is a function of   and  , ˆe  is a function of  , and ˆe  is a 

function of  . 
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Recap of Lecture 5: Vectors  Complex numbers 

2. Complex numbers 

Domain of Integers:     (from Zahlen, German for “numbers”) 

Domain of Real numbers:   

Domain of Complex numbers:  

Domain of Imaginary numbers: 𝕀 

“Blackboard bold font” 

See https://en.wikipedia.org/wiki/Blackboard_bold 

Definition of i: 1 i    

The principal value of the square root:   

Complex number: ,z x iy x y     

Real part of z x iy  :     Rex z z    

Imaginary part of z x iy  :     Imy z z     

Addition and subtraction: similar to vectors 

 1 2 1 2 1 2 1 2) Re( ) Re( ), Im( ) ImR ( ) Im(e( )z z zz z z z z       

  

https://en.wikipedia.org/wiki/Blackboard_bold
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If c , then 1 1 1 1) Re( ),Re( Im ) Im( ( )cz czc z c z  , but 

multiplication of complex numbers different from vectors 

 1 2 1 2 1 2) Re( )Re( ) Im(Re( )Im( )z zz z z z   

 1 2 1 2 1 2) Re( )Im( ) Im(Im( )Re( )z zz z z z   

 

    

    

    

    

    

    

Argand diagram:  

x  

y  z  

r  

  

Re  

Im  

  

cos sinz x iy r ir      

Modulus of z :  
2 2mod( )zz x y r     

Argument of z :   1arg tan
y

z
x

  ; think about quadrant for  . 

Principal argument generally arg( )z    
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Election of class representative? 
“The Faculty Board of Mathematics asked DAMTP to set up a Staff-

Student Committee for Mathematics in the Natural Sciences to 

provide an opportunity for discussion of matters relating to the 

courses. The Committee has four staff and three student members, 

the latter being drawn from the A and B courses in Part IA and from 

the Part IB course.” 

Self-nominate by Thursday 22 Oct 

Make your ‘campaign speech’ on Saturday 25 Oct 

Election Tuesday 27 Oct 

 

 

Now Lecture 7: Complex numbers 
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Recap of Lecture 7: Complex numbers 

Complex conjugate: *z  

 
*)R (e )( Rez z ,    

*)I mm (( I )z z   

 
*z z ,    

*)a arg( )rg( zz    

  
*

*z z  

Modulus: 
22* * *zz z z z z    

Complex exponential: 
 2

cos sin
i nii e e
  


   , integer n  

If  cos sin iz x iy r i re        then  

       * cos sin cos sin iz x iy r i r i re               

Multiplication     1 21 2

1 2 1 2 1 2

ii iz z re r e rr e
   

   

Division 
 

1

1 2

2

* *

1 1 2 1 2 1 1
* 2

2 2 22 22

i
i

i

z z z z z re r
e

z z rz r ez


 




     

  

2z  

1  Re  

Im  

1z  

2  

1 2z z  

1 2   

 

If iz re   and ia se , then nz a  can be written as (n ) 

 
 2i mn in ir e se se
   

   

so 1 nr s  and 
2m

n

 



  for 0,1, , 1m n  . 
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De Moivre’s theorem:  cos sin cos sini i


       for 

 . 

Complex logarithms:    ln exp( ) exp ln( )z z z z     

Since      exp arg( ) exp arg( ) 2 ,z z i z z i z n n     

then     2
ln ln ln 2 ,

i n
z re r i n n

 
 


     .  

The ‘principal value’ is  ln ln lniz re r i       (      ) 

Geometric progression 

1

0

1

1

NN
k

N

k

S a a










 


    

1

1

1

NN
k

N

k

T a a


 



 


  

Election of class representative? 
“The Faculty Board of Mathematics asked DAMTP to set up a Staff-

Student Committee for Mathematics in the Natural Sciences to 

provide an opportunity for discussion of matters relating to the 

courses. The Committee has four staff and three student members, 

the latter being drawn from the A and B courses in Part IA and from 

the Part IB course.” 

Self-nominate by Thursday 22 Oct 

 Sizhe Zhang (Churchill) 

 

 

 

Make your ‘campaign speech’ on Saturday 25 Oct 

Election Tuesday 27 Oct 

Now Lecture 8: Complex numbers  Hyperbolic functions 
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Lecture 8: Complex numbers  Hyperbolic functions 

2. Complex numbers 

Oscillations  

 

   

  

 

2

sin

cos sin cos sin

cos s

s

cos

in sin cos

co sin

i t i t

t i t

t ia t ib t i b t

t b t i a t b t

t b t

x t Ae a ib e

a ib

a

a

a

 

 

   

   

 

    



   

   

  

 

 





 

 

. 

with ;, A a iba b    . 

   

 

Differentiation by a real variable works as normal so 

    Re( ) Re , Im( ) Im
d dz d dz

z z
dt dt dt dt

   
    

   
 

when ;z t  . 

  

i tz re 

Re

Im
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Example 32: Impedance of AC circuit 

You do not need to know the electronics for this course! 

The current through a resistor R  is given by Ohm’s Law 

R RI V R  and so it is in phase with the voltage 

 

The current through a capacity is C
C

dVdQ
I C

dt dt
   so if 

 0Re i t

CCV V e   then  0Re i t

C CCVI i e   

 

0

0

0 0

0 0

arg( ) arg( )

i t

R

i t

R

R R

R R

V e

I e

V I

V I R









Re

Im

 

 
0

0

Re

Re

i t

R R

i t

R R

R R

V V e

I I e

V I R











0

i t

CV e

Re

Im

 0

0 0

Re i t

C C

C C

V V e

i
V I

C










   

0 0

0 0arg arg
2

i t

C C

C C

I e i CV

I V

 





 

 0

0 0

Re i t

C C

C C

I I e

I i CV
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Fundamental theorem of algebra: 

If ( )P z  is a polynomial of degree n , 

 2

0 1 2( ) , 0n

n na a z a zz aa zP       , 

then ( ) 0P z   has n  (complex) roots for all possible coefficients 

0 1 2 , ,, , naa a a  . 

Equivalently, if 1z z  is a root of ( ) 0P z  , then 

 1( ) ( ) ( ) 0P z z z Q z   

and ( )Q z  is a polynomial of degree 1n , but also ( ) 0Q z   must 

have at least one route, so 1 2)( )( ) ( 0( )P z z zz z Rz   , etc. 

Note that roots may be repeated. 
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Lecture 8: Complex numbers  Hyperbolic functions 

3. Hyperbolic functions 

Hyperbolic cosine  
1

cosh exp( ) exp( )
2

x x x    

Hyperbolic sine  
1

sinh exp( ) exp( )
2

x x x    

Hyperbolic tangent 
sinh exp( ) exp( )

tanh
cosh exp( ) exp( )

x x x
x

x x x

 
 

 
 

 

Relationship with normal trig functions: 

 cos( ) coshiz z  

 sin( ) sinhiz i z  

 tan( ) tanhiz i z  

Identities: 

 2 2cosh sinh 1x x   

 2 21 tanh sechx x   

    2 2coth 1 cosechx x   

3 2 1 1 2 3

10

5

5

10

cosh x

sinh x

tanh x
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 1 2sinh ln 1x x x
 
 
 
 

   ,    1 2cosh ln 1x x x
 
 
 
 

    , 

 
1 1 1

tanh ln
2 1

x
x

x

  
   

 

For identities such as  cosh A B , swap the sign compared with 

their normal circular trig equivalents where there is a product of two 

sine functions (but not where there is a single sine). For example, 

 
 

 

cos cos cos sin sin

cosh cosh cosh sinh sinh

A B A B A B

A B A B A B

  

  
 

 
 

 

sin sin cos sin cos

sinh sinh cosh sinh cosh

A B A B B A

A B A B B A

  

  
 

Equations for a circle: 

2 2 2x y r  ; 
2 2

2 2
1

x y

r r
  : centred on origin, radius r  

   
2 2 2

0 0x x y y r    ;  0 cosx x r   , 0 siny y r   : centred 

on  0 0,x y , radius r  

2 2 0x ax y by c     : centred on  1 1
2 2,a b  , radius 

   
2 21 1

2 2
r a b c   , provided r . 

Equations for an ellipse: 

2 2

2 2
1

x y

a b
  ; cosx a  , siny b  : centred on origin. If a b , 

then semi-major axis a  and semi-minor axis b . 

Now Lecture 9: Hyperbolic functions  Differentiation 
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Recap of Lecture 9: Hyperbolic functions  Differentiation 

Equations for an hyperbola: 

2 2 2x y s  ; coshx s  , sinhy s  , 

2 2 2x y s   ; sinhx s  , coshy s   

 

 

For 
2 2 0bx cya dy ex        

 Circle if a c  and (once completing the squares) have positive 

constant on right-hand side; no solution if negative constant. 

 Ellipse if ,a c  have same sign (i.e. 0ac  ) and (once completing 

the squares) have positive constant on right-hand side; no solution 

if negative constant. 

 Hyperbola if ,a c  have opposite signs. 

Recap of Lecture 9: Hyperbolic functions  Differentiation 

Derivative of  y x : 
   

0
lim
x

y x x y xdy

dx x





 
  

  

x 
x x +x 

y(x+x)  y(x) 

x 

y(x) 
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For a function to be differentiable, it must be continuous and 

 
       

0 0
lim lim
h h

f x f x h f x h f x

h h 

      
   

   
 

Differential operator: 
d

dx
 

Product rule:  
d df dg

fg g f
dx dx dx

   

Quotient rule: 
2

df dg
g f

d f dx dx
dx g g


 

 
 

 

Leibnitz’s formula: 

 

0

( ) (0) ( 1) (1) ( 2) (2)

(1) ( 1) (0) ( )

( ) ( )

( 1)
( )

2!

!

( )! !

n
n n n

n

n n

n
n m m

m

d n n
fg f g nf g f g

dx

nf g f g

n
f g

n m m












   

 






 

The following look like dealing with fractions (although subtler 

underneath) 

Chain rule:   
   df u du xd df du

f u x
dx du dx du dx

   

Reciprocal rule: 

 

1
dx dy

dy dx



 
  
 

 

Implicit differentiation: If ( ) ( )g y f x , then  

 
dg dg dy df

dx dy dx dx
            

dy df dg

dx dx dy
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Functions you should know how to differentiate: 

ay x  1ay ax    

 expy ax   expy a ax   

 ln ln lny ax a x    1
y

x
   

These are worth remembering, but can be derived from  expy ax  

 siny ax   cosy a ax   

 cosy ax  siny a ax    

 sinhy ax   coshy a ax   

 coshy ax  sinhy a ax   

Others worth remembering (but can be derived): 

tany ax  2secy a ax   

tanhy ax  2sechy a ax   
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Typos in notes for earlier lectures 

Lecture 5, p. 53: 

 

Lecture 8, p. 101: 

 

Lecture 9, p. 128: 

 

Now Lecture 10: Differentiation  Elementary analysis 
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Recap of Lecture 10: Differentiation  Elementary analysis 

Leibnitz’s formula: 

0

( ) (0) ( 1) (1) ( 2) (2)

(1) ( 1) (0) ( )

( ) ( )

( 1)
( )

2!

!

( )! !

n
n n n

n

n n

n
n m m

m

d n n
fg f g nf g f g

dx

nf g f g

n
f g

n m m












   

 






 

 (Video of proof also available separately.) 

Stationary point: where 0dy dx   

Local minimum: 0
mmd y dx  , 1 m n   and 0

nnd y dx  , even n  

Local maximum: 0
mmd y dx  , 1 m n   and 0

nnd y dx  , even n  

Stationary point of inflection: 0
mmd y dx  , 1 m n   and 

0
nnd y dx   for odd 2n   

Curve sketching 

0. Over what range of x  is the function defined? 

1. Where are the intercepts with the x  and y  axes?  

2. Are there any symmetries: does ( ) ( )y x y x   (even) or 

( ) ( )y x y x    (odd)? 

3. What is the behaviour as x?  

4. Are there any singularities (i.e. points where the function 

blows up to infinity)?  

5. Where are the stationary points, and what is their nature?  

6. Is the curvature positive or negative? Are there any points 

of inflection? 

Often do not need to complete all these steps 
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For x , 0;x xx ex e     

  

Hence, for x , 0n xx e
   

  

For x , ln 0x x   
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Recap of Lecture 10: Differentiation  Elementary analysis 

If 1sin ic s n
x

xy x ; does sinc(0) 1 ? 

  

 

The limit is given by  

 
0

lim ( )
x x

f x K


  

if and only if for any 0 , 0   such that 

 ( )f x K   for all 00 x x    . (108) 

 

Limit can exist even if 0( )f x K  or 0( )f x  is not defined. 
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0
sinc(lim ) 1

x
x


 , but still do not know if sinc(0) 1  

The limit is given by  

 lim ( )
x

f x K


  

if and only if for any 0 , X    such that 

 ( )f x K   for all x X . (109) 

 

Wait, if not yet 9:00! (Apologies for Thursday) 

Now Lecture 11: Elementary analysis  Infinite series 
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Recap of Lecture 11: Elementary analysis  Infinite series 

Algebra of limits 

Suppose 
0

lim ( )
x x

f x F


  and 
0

lim ( )
x x

g x G


 , then 

Addition/subtraction:  
0

lim ( ) ( )
xx

f x g x F G


    

Multiplication:  
0

lim ( ) ( )
xx

f x g x FG


  

Division: 

      
0

lim ( ) ( )
xx

f x g x F G


  if 0G   

      
0

lim ( ) ( )
xx

f x g x


 does not exist if 0F   and 0G   

      
0

lim ( ) ( )
xx

f x g x


 may exist if 0F   and 0G   

      
0

lim ( ) ( )
xx

f x g x


 may exist if F    and G   

Function:       
0 0

lim ( ) lim ( )
x xx x

f g x f g x f G
 

     iff  f x  is 

continuous at x G  

Exponents: 0

0 0

( )
( )

lim

lim ( ) lim ( ) xx
g x

g x G

x xx x
f x f x F

 

        
 

l’Hôpital’s rule: 

If 
0

lim ( ) 0
x x

f x


  and 
0

lim ( ) 0
x x

g x


  

or 
0

lim ( )
x x

f x


   and 
0

lim ( )
x x

g x


  

then 
0 0

( ) ( )
lim lim

( ) ( )x x xx

f x f x

g x g x 





;  repeat if necessary 
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Big-O notation 

At finite x : 

For ( ), ( )f x g x  , 

  ( ) ( )f x O g x  as x a   

if and only if  constants , 0K   such that 

 (( )) Kf gx x  for all x a  . (110) 

At infinity: 

For ( ), ( )f x g x  , 

  ( ) ( )f x O g x  as x   

if and only if  constants , 0X K   such that 

 (( )) Kf gx x  for all x X . (111) 

 

If we say the  2( )f x O x  when x then we say: 

 “the function ( )f x  is the order of 2x  as x  approaches infinity” 

 

By convention, we take the tightest bound. So, if  2( )f x O x  as 

x , we would not say  3( )f x O x , even though that satisfies 

(111). 

 

2

0
(1)lim

x
a bx cx O


      if 0a  ;  

0

2 (l m )i
x

bx cx O x

     

 

 2 2lim
x

a bx cx O x

     ; 

 cos (1)lim
x

x O


 ;      lim sinh (cosh ) x

x
x O x O e
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Continuity 

A real function ( )f x  is continuous at x a  if: 

(i) ( )f a  exists (i.e. the function is defined there), and 

(ii) lim ( ) ( )
x a

f x f a


 ,  

i.e., the limit exists and is equal to the function. (112) 

or 

A real function ( )f x  is continuous if for any 0 , 0   

such that ( ) ( )f x f a   for all x a   . (113) 

Limit (lecture 10) 

The limit is given by  

 
0

lim ( )
x x

f x K


  

if and only if for any 0 , 0   such that 

 ( )f x K   for all 00 x x    . (108) 
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Recap of Lecture 11: Elementary analysis  Infinite series 

6. Infinite series 

Partial sum: 
0

n

n k

k

S u


  

If lim n
n

S S


 , then for any , there exists a N  such that 

 n nS S N    . 

Series converges if 
0

lim limn k
n n

k

uS S


 


   is finite.  

Need 0ku   sufficiently rapidly as k  increases 

Series diverges if lim n
n

S


   

Series may oscillate between a sequence of values as n  increases 

If 
0 kk
u S




  and 

0 kk
v T




  then  

0 k kk
u v S T




   . 

 
0 k kk

u v R



   does not mean either 

0 kk
u





  or 
0 kk
v





  

converge 

 

Absolutely convergent if 
0 kk

u




  converges. Changing the order 

of the terms has no effect. 

Conditionally convergent if 
0 kk
u





  converges but 
0 kk

u




  does 

not. Changing the order of the terms may affect convergence. 

If absolutely convergent then 
0 kk
u





  is necessarily convergent. 

Wait, if not yet 9:00! (Apologies for Thursday) 

Now Lecture 12: Infinite series 



6. Infinite series  Recap of Lecture 12: Infinite series 

© Stuart Dalziel (Michaelmas, 2020)  48  

Recap of Lecture 12: Infinite series 

Grouping terms: does not change convergence; may help analysis. 

Reordering terms: if series not absolutely convergent, then 

reordering may change whether the series converges. 

Harmonic series 
1

1 1 1
1

2 3k k





     diverges. 

Alternating harmonic series 
1

1 1 1 1
1 ln2

2 3 4k k





      . 

Comparison test 

Compare the unknown positive series k

k

u  ( 0ku  ) with a 

known positive series k

k

v  ( 0kv  ). For constant 0K  : 

(a) If k k kvu K    then 
0

k

k

u




  is convergent if 
0

k

k

v




  is 

convergent; 

(b) If k kv ku K    and 
0

k

k

v




  diverges, then 
0

k

k

u




  also 

diverges.  (116) 

Ratio test 

For a positive series 
k ku : 

 

1

1

1

lim 1,  converges

lim 1,  diverges

lim 1,  may converge

k k kk

k k kk

k k kk

k

k

k

u u u

u u u

u u u






















 

The indeterminate (last) case requires a different test. 
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Leibnitz criterion 

An alternating series 1( 1)k

kk
S a   with 0ka   

converges if ka  is monotonically decreasing for large 

enough k  and lim 0k
k

a


 . 
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Power series 

For 
2

0 2

0

1( ) k

k

k

f x a x a a x a x




     , if the limit 

1limk k kaL a   exists, then: 

(a) Series converges (absolutely) for 1x L ; 

(b) Series diverges for 1x L ; 

(c) The test is indeterminate for 1x L . (118) 

Ratio test: 
1

1 1lim lim 1
k

k k

kk
k k

k

a x a
x x L

a x a 







     

 
1lim

1 1

k

k
k

x
La

a




   

Beyond NST1A 
0

( ) ;k

k

k

f z a z z




   has circle of convergence 

 
1

1

lim kk k

z
a a 

  

 

 

 

 

The third and final handout (Chapters 7 & 8) is available from 

the Centre for Mathematical Sciences 

Wait, if not yet 9:00! 

Now Lecture 13: Infinite series 
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Recap of Lecture 13: Infinite series 

Taylor series 

  

( )y f x  

x  

y  

x a  x a h   

( )f a  
       f x f a x a f a    

2R  

 

Taylor series 

   
   

     

2 3

4 5

( ) ( ) ( )

1

( ) ( ) ( ) ( )
2 6

( ) ( ) ( )
24 120 !

.

n

iv v n

n

x a x a
f x f a x a f a f a f a

x a x a x a
f a f a f a

n

R 

 
      

  
   



 

Taylor theorem gives remainder term 

 
 

1

( 1)

1 ( )
( 1)

n

n

n

x a
R f

n











 
 

for some a x   (or x a   if x a ), 

 

1

( 1)

1 m ( )
1

ax
( ) a x

n

n

n

x a
R f

n 


 










 
. 

Need to know how to use Taylor series and Taylor’s theorem, but 

not how to derive Taylor’s theorem. 

Maclaurin series: Taylor series expanded about 0x  . 
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If  f x  is infinitely differentiable, and remainder 1nR   goes to zero 

as n , can uses an infinite number of terms to produce a Taylor 

power series: 

     

2 3

( )

0

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2! 3!

( )
( )

!

!

n
n

k

k

k

x a x a
f x f a x a f a f a f a

x a
f a

n

x a
f a

k





 
       


 




 

 

If  f x  is even then the Power Series will only contain even 

powers of x . 

If  f x  is odd then the Power Series will only contain odd powers 

of x . 

The derivative of an even function is an odd function. 

The derivative of an odd function is an even function. 

 

Common Taylor Series  

 
2 3

0

exp( ) 1
2 3

n n

n

x x x x
x x

n n





         
   

 , 

 
2 3

0

( 1) ( 1)
exp( ) 1

2 3

n n n n

n

x x x x
x x

n n





 
           

   
  

 
2 4 6 2 2

0

cosh( ) 1
2 4 6 (2 ) (2 )

n n

n

x x x x x
x

n n





        
    

 , 

 
3 5 7 2 1 2 1

0

sinh( )
3 5 7 (2 1) (2 1)

n n

n

x x x x x
x x

n n

 



        
      

 . 
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3 5 2 1 2 1

0

( 1) ( 1)
sin

3 5 (2 1) (2 1)

n n n n

n

x x x x
x x

n n

 



 
      

     
  

 
2 4 2 2

0

( 1) ( 1)
cos 1

2 4 (2 ) (2 )

n n n n

n

x x x x
x

n n





 
      

   
  

Ratio test shows these series converge x . 

Absolute series: exp( )x  for 0x   and cosh , sinhx x x . 

Alternating series: exp( )x  for 0x   and cos , sinx x x . 

Reminder 

 

0

0

1

0

cos(

sin(
sin

cos

sin

sin

cos

)sin

) sin( )
lim

l
sin( )

i

ci os

m

l m

x

x

x

x x

x

x

d x
x

dx

x

x x

x

x

x x

x

x
































 






 

 

0

0

1

0

cos(
cos

sin sin

sin
li

co

)

s

c

sin sin

cos

os( )
lim

l
cos )

m
(

i

m
x

x

x

d x
x

dx

x x

x

x
x x

x x

x x

x

x

x



































 



 

 

The third and final handout (Chapters 7 & 8) is available from the 

Centre for Mathematical Sciences – week days only 

Wait, if not yet 9:00! 

Now Lecture 14: Infinite series 
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Recap of Lecture 14: Infinite series 

De Moivre’s theorem 

 

2 3 4 5 6

2 3 4 5 6

2 4 6 3 5

( ) ( ) ( ) ( ) ( )
exp(i ) 1

2 3 4 5 6

1
2 3 4 5 6

1
2 4 6 3 5

cos sin

i i i i i
i

i
i

i

i

i

    
 

    


    

 



       
    

       
    

 
         

 



   



 

 

Logarithms : cannot expand ln x  about 0x  . Instead 

 
2 3 4 5

1ln(1 ) ( 1)
2 3 4 5

n
nx x x x x

x x
n

          , 11 x    

For large x , use 
1 1

ln ln ln 1 ln( )1
x

x
x x


 

        
 

 as 

1
1

x

x
 


  when 1x    

2 3
1 1 1 1 1

ln
2 3

x x x
x

x x x

     
      

   
 

 

Binomial expansion for ( ) (1 )f x x   , for real   

 

2 3( 1) ( 1)( 2)
(1 ) 1

2! 3!

( 1)( 2)( 3)...( 1)
.

!

n

x x x x

n
x

n

     


    

  
     

    
 

 

If   , then valid for any x , but if  , then valid only for 

1 1x   . 
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Compose more complex series from combinations of simpler ones: 

  
log(1 ) 1

, log 1 , ,
1 1

x
series x series x x series x

x x

   
           

 

1 1
, ,

1 sin 1
series x series

x




  
       

 where  sin ,series x x   

 

Composing can be much simpler than determining derivatives 

 

       

 
 

2
2

3

3

log(cos ), log cos 0 tan 0 sec 0
2!

sin 0

3! cos 0

x
series x x x

x

    

 

    

   

log(cos ), log 1 cos 1 ,

log 1 , , cos 1,

series x x series x x

series series x x  

    

     

 

Can differentiate and integrate series 

    , ( ),
d

series df dx x series f x x
dx

  

  , ( ),series f dx x series f x x dx  
    

 
1 2 3( ) (1 ) 1 ( 1)n nf x x x x x x           

2 3 4 11 1 1 1
2 3 4 1

( ) ( 1) ln(1 )n n

n
f x dx x x x x x x
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 p. 190 

Wait, if not yet 9:00! 

Now Lecture 15: Infinite series  Integration 
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Recap of Lecture 15: Infinite series  Integration 

Newton-Raphson 

 

 1

( )

( )

n
n n

n

f x
xx

f x



   

Quadratic convergence *2

*

31
1 2

(
( )

(

)

)
n n n

f x
O

f x
  


 


 near root 

*)( 0f x  , where *n nx x   . 

Stationary points can cause a problem 

 

x0

x1 x2
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Recap of Lecture 15: Infinite series  Integration 

5. Integration 

 

0x

a
 Nx

b
 

1x  2x  3x  x  

 f x  

1  2  
3  

 

Riemann sum: 
1

1( )) (
N

ii

i

iN x xS f 



  

Riemann integral: 1

1

lim( ) ( () ) lim
N

i i N
N

i

b

i
a N

x xf x Sx d f 
 



 
 


 


   

If ( )f x  and ( )g x  are (Riemann) integrable in [ , ]a b  then 

 ( ) ( )
a b

b a
f x dx f x dx    

 ( ) ( ) ( )
b c b

a ca
f x dx f x dx f x dx     

 ( ) ( )
b

a a

b

kf x dx k f x dx  , where k  is constant 

  ( ) ( ) () )(
b b b

a aa
dx f x dx xf x g dx g x      

Integration is a linear operation (as is differentiation). 
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Integrand  f x  is the function being integrated. 

Primitive  F x  is the integral of the integrand: ( ) ( ) .
x

a
F x f u du   

Fundamental theorem of calculus: 
 

   
x

a

dF x d
f u du f x

dx dx
   

If  F x  is a primitive of  f x , then    G x F x c   is also a 

primitive:      
d d

F x G x f x
dx dx

    

Infinite number of primitives, differing by an additive constant. 

 

If the function ( )f x  is integrable for all x a  then the 

infinite integral is 

 ( ) lim ( )
b

a ab
f x dx f x dx





 
    , 

provided the limit exists. 

 

If ( )f x  is singular at *x x  with *a x b  , then the 

improper integral is defined as 

 
*

*0
( ) lim ( ) ( )

b x b

a a x
f x dx f x dx f x dx




  

      

provided the limits exist. 

 

If ( )f x  is discontinuous at *x x  with *a x b  , then the 

integral is 

 
*

*

( ) ( ) ( )
b x b

a a x
f x dx f x dx f x dx    . 
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Common integrals 

1
n

ndx
nx

dx

   
1

1

m
m x

x dx c
m



 
 , 1m    

1
ln

d
x

dx x
   

1
lndx x c

x
   

   exp exp
d

ax a ax
dx

      
1

exp expbx dx bx c
b

   

sin( ) cos( )
d

ax a ax
dx

   
1

cos( ) sin( )bx dx bx c
b

   

cos( ) sin( )
d

ax a ax
dx

    
1

sin( ) cos( )bx dx bx c
b

    

2tan( ) sec ( )
d

ax a ax
dx

   
2 1

sec ( ) tan( )bx dx bx c
b

   

sinh( ) cosh( )
d

ax a ax
dx

   
1

cosh( ) sinhh( )bx dx bx c
b

   

cosh( ) sinh( )
d

ax a ax
dx

   
1

sinh( ) cosh( )bx dx bx c
b

   

2tanh( ) sech ( )
d

ax a ax
dx

   
2 1

sech ( ) tanh( )bx dx bx c
b
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Often use substitutions rather than simply remembering 

 1

2 2
sin ( )

1

d a
ax

dx a x

 


 

 1

2 2
cos ( )

1

d a
ax

dx a x

 



 

 

1

2 2
sin

dx x
c

bb x

 


  

[ sinx b  ] 

1

2 2
ˆcos

dx x
c

bb x

  


  

[ cosx b  ] 

 1

2 2
tan ( )

1

d a
ax

dx a x

 


  
2 2

11
ˆtan

dx x
c

b bb x

 
  

[ tanx b  ] 

 1

2 2
sinh ( )

1

d a
ax

dx a x

 


  

1

2 2
sinh

dx x
c

bx b

 



 

[ sinhx b  ] 

 1

2 2
cosh ( )

1

d a
ax

dx a x

 


  

1

2 2
cosh

dx x
c

bx b

 



 

[ coshx b  ] 
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Special forms 

1( ) ( )
d df

f x f x
dx dx

        
   

11

1

df
f x dx f x c

dx

 




         

1    

 
( )

ln ( )
( )

d f x
f x

dx f x


    

( )
ln

( )

f x
dx f x c

f x


   

 

 

For  cos
n

x dx ,  sin
n

x dx ,  cosh
n

x dx ,  sinh
n

x dx , etc., 

convert using trig ids to terms involving simpler powers (e.g. cos px

, sin px , cosh px , sinh px , etc. with 0 np  , ,p n ) and/or 

   
q

f x f x  then integrate, or use (complex) exponentials/De 

Moivre’s theorem. 

 

 

Wait, if not yet 9:00! 

Now Lecture 16: Integration 
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Recap of Lecture 16: Integration 

 

There is always more than one answer to an indefinite integral as 

things can differ by an arbitrary constant. Sometimes, they can look 

really quite different (especially if trig functions are involved), 

depending on your integration strategy:  

Partial fractions 

2

1 1
ln ln 1

( 1) 1
dx dx dx x x c

x x x xx x

 
       

 
    

either 
( 1) ( ) ( )

1 ( 1) ( 1)

x x x

x x x x x x

         
  

  
  1  , 1    

or ‘cover-up rule’ if can fully factorise denominator 

1
0 1

0 1
x    


;  

1
1 1

1
x      


. 

Cover-up rule more difficult if repeated root and not recommended. 
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Substitution 

For  f x dx , choose substitution  

  x g u    dx g u du   

and rewrite  f x  in terms of u , i.e.     f x f g u , so 

     
 dg u

f x dx f g u du
du

   

     
 

 

 1

1

b g b

a g a

dg u
f x dx f g u du

du




   

Denominator involves Substitution Comments 

2 2a x  tanx a    

2 2( )a x  sinx a   Need x a  

2 2( )x a  coshx a   Need x a  

2 2( )a x  sinhx a u   

2 2a x  tanhx a u  Need x a  

2 2a x  cothx a u  Need x a  

2 2 ( )( )a x a x a x     Partial fractions  

2a bx cx   or 
2a bx cx   

Complete the 

square 
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For integrals of trig functions  

 tan( 2)x t , 

 
2

2
sin ,

1

t
x

t



  

2

2

1
cos

1

t
x

t


 


  

2

2
tan

1

t
x

t
 


 

Complex exponentials 

Mix of trig and exponential functions can be easiest using complex 

exponentials (rather than integrating by parts repeatedly) 

 ( )sin Imax a ib xe bxdx e dx 
    

Integration by parts 

  
b bb

aa a

dg df
f dx fg g dx

dx dx
    

One route to Taylor series 

Reduction formulae 

Aim for a recurrence relation, often integrating by parts 

  

1 2Rewrite in terms of , , ...

( ; ) ( ) ( ; ) ( ) ( ; ) ( )

nn n

b b

n

b

a a a

I I I

I f x n g x dx f x n g x f x n g x dx

 

      

 1 2( , ,...)n nnI I I   and evaluate 0 1, ,...I I  

Often useful for integrands of the form    ; ( )
n

f x n p x q x    , e.g. 

 lnnx xdx  
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Double factorials 

(You only need to know ordinary factorials) 

 

2 3

2 4 6 2 ( !) 2

!! (2 1)!
1 3 5 2

1

2 ( )

!

1
!

m

m

m

n m n m

n m
n n

m

m
m

   

      


 
      






 

Odd and even functions 

Odd: 
0

0

( ) 0
x a

x a
f x




  if 0 0( ) ( )f xxx f x     

Even: 
0 0

0 0 0

( ) 2 ( )
x a x a

x a x
x dx g x dxg

 


   if 0 0( ) ( )g x x g x x    

More partial fractions 

Can do partial fractions using complex domain for factorisation of 

denominator (not recommended: too easy to get it wrong!): 

 
      2

1 1

1 11 1

x x a b c

x x i x i x x i x ix x

 
   

      
  

  
1 1 2

1 1
1 1 2

x a
i i


    

 
  

      
1 1 1 1

1 2 1 2 1 2

i i i i
x i b

i i i i i i i

    
      

     
 

   
1 1 1

1 2 2 1 2

i i
x i c

i i i

 
    

 
  

 
  2

1 1 1 2 1 2

11 1

x

x x i x ix x


  

   
  

To recover real domain answer, combine last two terms (although 

you could choose to integrate the complex partial fractions first!): 



5. Integration  Now Lecture 17: Integration 

© Stuart Dalziel (Michaelmas, 2020)  67  

 
  

   
  

1 1
2 2

22

1 1 1

1 1 11 1

x i x ix x

x x i x i x xx x

  
   

     
 

Easier to use the naïve way! 

Integrating complex logarithm 

If z  then 
1

lndz z c
z

   with c . 

 

   

   

33

22 2

3

1
ln ln

ln(2 ) ln(3 )

ln 2 ln3 ( )

ln

ln 2 ln

2 ln 3

3

i

i

e

e

i i

i i

dz z z
z

e e

e i e i

i











 

 











 



 

 





 











 

Integration in the complex plane is not part of NST1A 

Now Lecture 17: Integration 
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Recap of Lecture 17: Integration 

Differentiation by parameter 

Three contributions: integrand and the two limits 

 

Integrand depending on parameter ( ; )f x q  

 

 

Note 
f

q




 will generally be a function of x . 
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Upper limit depending on parameter ( )b q  
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Lower limit depending on parameter ( )a q  

 

 

Combining 

 
( )

( )
) ( ; )(

b q

a q
I xf x dqq    

 
( )

( )

( ; )
( ( ); ) ( ( ); )

b q

a q

dI df x b da
dx f b q q f a q q

dq dq dq

q

q
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Functions of more than one variable 

Covered properly in Lent term 

Consider ( , )h x y  

The partial derivative with respect to x  is obtained by treating y  as 

a constant and differentiating what is left 

 
0

( , ) ( , )
lim
x

h h x x y h

x

x y

x





  



. 

Similarly 

 
0

, ) ( , )
lim

(

y

y y h x yh h

y

x

y 





 





 

Example: 2 21
2

( , ) 4 ( )h y x xx y     

 22
h

x y
x


  


, 

 (2 1)
h

x y
y


 


 

  
x  

y  

( , )h x y   ( ), ( )h x s y s  
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What is 
dh

ds
 if 1x s   and  2 4 2y s  ? 

Could substitute then differentiate: 

 

  2 21
2

2

2
2

1
2

3 4 51 1
8 4

( ) ( ), ( ) 4 ( )

4
4 ( 1) ( 1

( ( ) ) ( )

2

)
2

5 2 2

x s y s

s s

h s h x s y s x s

s
s s

s ss

   





 


      

  


 



 

  

 2 3 451
2 4

3 4 6
dh

s s
ds

s s     

 

( )h s  

s  

s  
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Could use the chain rule for function of more than one variable 

 ( , ) ( ), ( )h x y h x s y s  

 22
h

x y
x


  


, 

 (2 1)
h

x y
y


 


, 

where 1x s   and  2 4 2y s   

 1
dx

ds
 ,    

dy
s

ds
 . 

 

   

    
2 21

2 31
2

4

2

2
21

2

2 2 2

2 3 451
2 4

21
2

2 4

2

2( 1) ( 4)

(2 1)

(2( 1) 1) ( 4)

3

1

1

4 6

ss s s ss

hh

x

x y

s s

s

dy

ds

dh

ds

s s

y

x

dx

d

sy

s

ss s

s
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Differentiation by parameter 

Define primitive (( ,, ))
x

f uF x qq du   

    ( ) ( ), ( ),I q F b q q F a q q   

Chain rule  

        

( ) ( )

( , ) ( ,

( )

( )

(

)

)

(

( )

(

,

)

),

( ( ); ) ( (
( ;

);
)

)

x x

x a q

F
f a q q

x b q x a q

f u q du f u q du

x b q

F
f b q q

q q

b q

a q

ab

F db

x dq

db
f b q q

d

F F

q q

f

F da

x dq

da
f a q q

dq

x q
dx

I

d

qq

d

q  

 

 













  


 







 













 

In this we have also used 

Fundamental theorem: ( , )
F

f x q
x





 

Also, taking x  constant   ( , )
x

f u q du
q

F

q

 




   

 

For NST1A, the key is to understand how to use this rather than 

derive it 
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Gamma function 

1

0
( ) x ux u e du


     

Integrate by parts for integer 0x   or use differentiation of 

0
( ) xI e dx


   to show relationship with factorials. 

For n , 
( 1)! 1

( )
n n

n
undefined otherwise

 
  


 

 

 

Now Lecture 18: Integrals 
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Recap of Lecture 18: Integration 

Schwarz’s inequality 

     
2

2 2( ) ( ) ( ) ( )
b b b

a a a
f x g x dx f x dx g x dx    

 

 

 

 

Riemann integral 

1D 1

1

( ) i )( ( )l m
N

a N

b

ii i

i

x xf x dx f 




 
 

 
  

2D  
1

l, im ( , )i i

P

i
A P

i

h x y hdA x y A




 
 





  

 

 

 
1

,

1

1

( , ) ( , )

lim

l

ˆ

im

( ,

,

ˆ ˆ,

)

b d b d

a c a c

b

a N

N

j

j

M N

i j

i
M

j

d b

c a

N

h x y dy dx h x y dy dx

dh x y y

h x y y x

x

h x y dxdy



 












 
 
 



 




 

 





 





   



 





 

Here, we choose ˆ ˆ,i jx y  to lie within the corresponding A x y    

elements. For example, 1 1
2 2

ˆ( ) ,ˆ ( )i ja i x y bx j y        and 

( )x b a M   , ( )y d c N   . 
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More complex domains. If R  is the region defined by 

0 1( ) ( )x y y xy    for 0 1x x x   

  

 
1 1 1

0 0 0

( )

( )
( , ) ( , ) ( )

xx y x

R x y xx
h x y dA h x y dy dx I x dx      

where 
1

0

( )

1 0
( )

( )( ) ( , ) ( , ) ( , ( ))
y x

y x
I x h x y dy Y x y Y x yx x    

with ( , ) ( , )
y

Y x y h x u du   the primitive of ( , )h x y  with respect to 

y  ( ( , )Y y h x y   ). 
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Alternatively, we may be able to define R  as 0 1( ) ( )y x x yx    for 

0 1y y y   

  

  

 

 
1 1 1

0 0 0

( )

( )
( , ) ( , ) ( )

yy x y

R y x yy
h x y dA h x y dxdy J y dy      

where 
1

0

( )

1 0
( )

( ) ( , ) ( , ) (( ) ( ) ),
yx

yx

J y h x y dx X x yy yX x y    

with ( , ) ( , )
x

X x y h s y ds   the primitive of ( , )h x y  with respect to 

x  ( ( , )X x h x y   ). 

 

3D  
1

, , ,lim ( , )i i i i

i
V P

P

x y z dV zx y V  




 
 
 

    

 

Now Lecture 19: Integration 
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Recap of Lecture 19: Integration 

Regions 

If region convex 

 

 
1 1 1 1

0 0 0 0

( ) ( )

( ) ( )
( , ) ( , ) ( , )

x y y x

R

x y

x yx y y x
h x y dA h x y dy dx h x y dxdy       

If region not simply convex, this may be more difficult 

 

1

11

0

1

1

0

2

2

00

1

0 2

2

3

(

(

( )

( ) )

( )

( )( )

(

)

)
( , ) ( , )

( , )

( , ) ( , )

x

x y

x y

x

S x

y

y

y y

y

y

y x

y

x y

y

y

x y

x

x

h x y dA h x y dy dx

h x y dxdy

h x y dxdy h x y dxdy
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Separable integrands 

If integrands separable ( , , ) ( ) ( ) ( )f x y z a x b y c z  and limits constant 

 

1 1 1 1 1 1

0 0 0 0 0 0

1 1 1

0 0 0

( ) ( ) (

( , , ) ( ) ( (

)

) )
z y x z y x

z y x z y x

z

z

y x

y x

f x y z dxdydz a x b y c z d

c z dz b y dy a

x

x d

dydz

x



     
          

     

  
 

Polar integrals 

Circular polar: dA r dr d  

 ( ,( , ))
A r

f r r df x y d rA d


     

Cylindrical polar: dV r dr zd d  

   ( ,, ,, )
V z r

g x y z dV dg r dz zr dr


      

Spherical polar: 
2 sin dr dd dV r     

   2( , , ) si, , n
V r

g r r drg x y z dV d d
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Strategy 

1 Choose the coordinate system taking into account the shape of the 

area A (or volume V ) and the form of the integrand ( , )f x y  (or 

( , , )g x y z ) to make the calculation as simple as possible; 

2 Determine limits, e.g. 0 1( ) ( )x y y xy    and 0 1x x x  , or 

0 r a   and 0 2    (three pairs of limits if volume); 

3 Rewrite the integrals (including integrand) in terms of the selected 

coordinate system; 

4 Look to see if the integrand is separable and the limits 

independent of each other; 

5 Decide on order in which to integrate; 

6 Integrate with respect to one variable at a time, working our way 

outward through all variables. Each integration eliminates one of 

the variables. 
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Gaussian integral 

2a
x

a
a

I e dx


   

 

 

2

2 2

2 2

2
2

a
x

a
a

a a
x y

a a

x a y a x y

x a y a

I e dx

e dx e dy

e dy dx





 

 

   

 

 
  

   
      





 

 

 

  

 2 22 22
2

0 0

a a x yr r

a
a a

a a

e r dr d I e dy dx e r dr d
 

 
 

  

   
         

  
22 2

2

) 2 1( r

a

Integral within annulus

a

max va
Area of annulus

lue
in annulus

a

eJ a e r dr ad







     

As a, 
2

0ae  , 
2

0aae  , 
22 0aa e    ( ) 0J a   

 
 2 2

2
x a y a x y

a
x a y a

I e dy dx
   

 
         

2

0

r
r

r
d e r dr

 

 


 


 

   
         

r = a 

r = a2 
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2

2

2

0

1
2

0
2

r
r

r

r

I d re dr

e

 

 






 



 









  
 



 

 

 I    

Error function 

Error function:  
2

0

2
erf

z

xz e dx


  ;      erflim ( ) 1
z

z


 . 

  

  24 6
2 2ex

1
) 1

2! 3! !
p(

n nxx x
x x

n


        

 

 

2

0

24 6
2

0

2 15 7
3

2
erf(

1
1

2! 3! !

11

3 5(2!) 7(3!) (2 1)( !)

)

2

2

z
x

n n
z

n n

x

z e

x x
x dx

n

d

zz z
z z

x

n n











 
      

  

 
      

 













  

Now Lecture 20: Integration  Probability theory  
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Lecture 20: Integration  Probability theory  

If you encounter the Gaussian integral while answering a question 

in integration, you can simply quote or make use the result unless 

you are told explicitly to show/prove that it is true: 

 
2re dr 





  

Lecture 20: Integration  Probability theory  

8. Probability theory 

Sample space: Set of all possible outcomes. 

Event: Subset of outcomes. 

Ven diagram: A graphical representation of events 

  

A  
B  

S  

C  

 

If 1 2 3, , ,{ , }sS x x x x  is the sample space and ,{ , },i j aA ss s  an 

event (defined by a list outcomes), then all members of A  must be 

contain in S . 

Empty set: {}   

Subset: A S ; S S ; S . 

Superset: S A  

Intersection: A B  The outcomes common to both events 
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Union: A B  The set of outcomes found in one or both of A , B . 

Complement: A  Outcomes not in event A .  A S A  .  A A . 

Mutually exclusive: A B ; A A  ; Only one event can 

occur. 

Commutative: A B B A    

 A B B A     

Associative:    A B C A B C     ;  

    A B C A B C        

Distribution 

      A BB CC AA       

      A BB CC AA       

Negation 

 A B A B   ,    A B A B   ,  

 A B A B   ,     A B A B   . 

Related to Boolean algebra ( or  , and  ) 

 A B A B   ; A B A B    
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Probability: for N  experiments producing An  occurrences of event 

A, the probability of A is   lim A

N

n
P A

N
 . The expected number of 

occurrences for N  experiments is  AN N P A .  

If all the possible outcomes in sample space 1 2 3, , ,{ , }sS x x x x  

have the same probability, and event A S , then  
 
 

size A
P A

size S
 . 

Sample space   1P S   

Empty set   0P    

Event  0 1P A   

   0P A A   

   1P A A   

 ( ) 1 ( )P A P A   

        P A B P A P B P A B      

 

       

     

 

P A B C P A P B P C

P A B P B C P C A

P A B C

    

     

  

 

We can get the last of these from 

    

      

            

                 
             

P A B C P A B C

P C

P C

P A B C

P A C B C

P A C P B C P A C B C

P A C

P A P B P C

P A B

P A P B P A B

P A B

P A B P BP C P A BA P C CP B

    

  

  

  



  



 

  

       

   



    

 

Now Lecture 21: Probability theory 
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Lecture 21: Probability theory 

Conditional probability: The probability that B  occurs, given that 

A has already occurred is  

  
 
 

|
P A B

P B A
P A


 .  

Often said as “the probability of B given A”. 

Rearranging gives the probability of both occuring 

      |P A B P A P B A  . 

If the events are independent, then event A has no bearing on the 

outcome of event B and 

  
 
 

 |
P A B

P B A P B
P A


  , 

          |P A B P A P B A P A P B   . 

In general, we must consider the possibility that the events are not 

independent. 

Similarly  
 
 

|
P A B

P A B
P B


  

      |P A B P B P A B   

          | |P A B P B P A B P A P B A    

Bayes’ Theorem: 
( ) ( )

( )
( )

P A P B A
P A B

P B
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Since  

 

( ) ( ( ) (( ) ( )

( )

) )

) ( )

( ) ( | ) ( ) ( |

(

)

S

A A

A

P B P B A P B A B

P B A P B P B A A

P A P B A P A P B A



  

  

 

   

     

 
( ) ( )

( )
( ) ( ) ( ) ( )

P A P B A
P A B

P B A P A P B A P A


  

  
 

Can extend ideas: 

        1 2 3 1 2 1 3 1 2| |P A A A P A P A A P A A A     

Note: We are multiplying the conditional probabilities together. If 

the events are independent, then 

            1 2 1 3 1 2 1 2 3| |P A P A A P A A A P A P A P A  , 

but if they are not independent, then the two products are different. 

 

 

Permutations: Arranging things where order matters. The number 

of ways of selecting r  items from a set of n , where the order 

matters: 

  
 

!
,

!

n

r n r

n
P P P n r

n r
  


 

 

Now Lecture 22: Probability theory 
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Lecture 22: Probability theory 

Permutations 

Order matters 

  
 

!
,

!

n

r n r

n
P P P n r

n r
  


 

Combinations 

Order does not matter.  

The selected permutation 
!

( )!

n

r

n

n
P

r



 can be rearranged !r  ways 

  
 

!
,

! !!

n
n r

r n r

Pn
C C C n r

n r r

n

r r

 
  

 
    

Binary outcomes: an event either happens or it does not happen. 

Combinations    binomial coefficient 

If ( )P A p , then for n  independent experiments, 

     exactly  times out of 1
n rn r

rP A r n C p p


    

if it does not matter which of the n  experiments yield A. 

 

Can view 
 

! !

! ! ! !

n

r

n n
C

n r r s r
 


 as the number of ways of 

arranging n r s   objects of types R  and S  if we cannot 

distinguish between different objects of the same type. 
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Arrangements 

Generalise the binomial arrangements to arrangements of more 

different types of object. 

 1r  indistinguishable objects of class 1R , 

 2r  indistinguishable objects of class 2R , 

 … 

 kr  indistinguishable objects of class kR , 

giving 1 12

k

k i in r r r r      objects total. These be arranged 

 
 

 
1

11 2! ! !!

!!
k

i

k

i i

i

k

r

r r r r

n 







  

distinguishable ways. 

 

Care about the order of everything: !n  

Don’t care about the order of n r  not selected: 
!

( )!

n

rP
n

n r
  

Don’t care about the order of r  selected and n r  not selected 

 
!

( )! !

n

rC
n

n r r
  

Care about the order of r s t   but not u v w  ; 

 
( )!

! ! !

r s t u v w

u v w
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Discrete probability distributions 

Let X  be a random variable. This is chosen from the set 

0 1 2 1, , ,{ , }nx x xx   through a random process with corresponding 

probabilities 0 1 2 1,{ , }, npp pp  . 

 0 1 2 1, ,{ ,, }nx xX x x   

Only discrete values of X  are permitted. 

 

Probability function: 

    
if 

0 if 

i i

i

p x x
P X x f x

x x


   


 

Requires    
0 1 1{

1

0 , , }

1
n

n

i

i x x x x

f x f x






    

  

Cumulative probability function: 

     ( )
i

i

x x

P X x F x f x


   , 

Note   0F x   in the limit x , and   1F x   in the limit 

x . 

 
0  1 2  3 

x  

 f x  

1
8  

3
8  

2
8  

 
0  1 2  3 

x  

 F x  

2
8  

6
8  

4
8  

1 

 



8. Probability theory  Now Lecture 23: Probability 

© Stuart Dalziel (Michaelmas, 2020)  92  

 

 

Now Lecture 23: Probability 
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Reap of Lecture 23: Probability 

The mean, expected value or expectation value of a discrete 

random variable is 

 
1 1

[ ] ( )
n n

i i i i

i i

X E X x p x f x
 

     , 

and the variance 

 

 
22 2 2 2 2

2

2

1 1

[ ]

( ) ( )
n n

i i i i

i i

E X E X X X

x f x x f x

  

 

       

 
   

 
 

 

Relationships  

 [ ] [ ]E aX aE X      
2 2 2[ ] [ ]E aX a E X   

  [ ] [ ]E X Y E X E Y    

 
1

[ ( )] ( ) ( )
n

i i

i

E g X g x f x


   

So 

    
2 2 2[ ] [ ] 2E X Y E X E XY E Y        

  2 2 2 2cov ,X Y X Y X Y       

where the covariance* 

          cov , X YX Y E XY E X E Y E XY       

is a measure of how well correlated the random variables are. 

*You do not need to know about the covariance. If the events are 

independent, then  cov , 0X Y  . 
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Binomial distribution  

For n  discrete, independent events: 

 ( ) (1 )n r n r

rf r C p p   ,    0 r n   

with mean 
0

( ) (1 )
n

n r n r

r

r

E X r C p p np  
  



     

and variance    
22 2( ) ( ) 1E X E X np p      

Mean increases as n , standard deviation increases as n  

   

  

  

  

0.4; 8p n 

0.4; 32p n 

0.4; 128p n 
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For probability, it is useful to remember 

 

  1

0 0

1

!

( )! !

n n n

n nn i n i k k

i k

n

n

i

p

q

np q npq q

n
C p p q

n k

q p

k



 

 

    

 


 

 
  

 
2 3

12! 3! ! !

k k
x

k

x x x x
e x

k k


         

Poisson distribution 

Has no upper limit on the (discrete) outcome: 

 
exp( )

( )
r

P X r
r

 
  


 

but need finite mean   ; variance 2   

Poisson distribution is the limit of the binomial distribution when 

n , 0p   but with np  remaining finite. 

Mean increases as  , standard deviation increases as   
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https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeat

hsandmarriages/livebirths/articles/howpopularisyourbirthday/2015-

12-18 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/articles/howpopularisyourbirthday/2015-12-18
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/articles/howpopularisyourbirthday/2015-12-18
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/articles/howpopularisyourbirthday/2015-12-18
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https://visme.co/blog/most-common-birthday/ 
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Significance, Volume: 14, Issue: 1, Pages: 6-7, First published: 14 

February 2017, DOI: (10.1111/j.1740-9713.2017.00992.x)  

 

Tue-Fri 
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Continuous probability distributions 

Random variable X   

Probability density function (pdf):  f x  such that 

 ( ) 1dx xf



  

 ( ) ( )P x X x dx f x dx     in limit 0dx  , 

so   ( )P X f x dx



     . 

Cumulative probability function (cpf):  F x  is 

 ( ) ( ) ( )
x

F x P X x f x dx


    . 

Primitive of ( )f x  with ( ) 0lim
x

F x


 , (lim ) 1
x

F x


 .  

 
( )

( )
dF x

f x
dx

  

Mean: ( ) ( )E X xf x dx



    

Variance:  
2

22 2 2 ( ) ( )E X E X x f x dx xf x dx
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Uniform distribution 

 

1
when

( )

0 otherwise

x
f x

 
 


 

 
 

 

 

0 if

d
( ) if

1 if

x

x

x x
P X x x

x






 

   







    

 
  

  

 

 

Now Lecture 24: Probability theory 
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Summary of Lecture 24: Probability theory 

Normal distribution or Gaussian distribution with mean   and 

variance 2 ,  2,N   : 

 
2

2

1 ( )
( ) exp

22

x
f x



 

 
   

 
 

 0,1N :  

You will learn how to evaluate the Gaussian integral in Lent term: 

Let 

2x

I e dx
 


  . 

Then 

 22 2

2 2 2

2

2

2
x x y

xx y y

e dx e dx e dy

e e dxdy e xdy

I

d

  

  

     

   

  



     
     

   




 



  

   

 

Express cosx r   and siny r   then dxdy r dr d  and 

 

2 2

2 2

2

0 0

0
0

1
2 2

2

r r

r r

e dr d d e dr

re

I r

d e

r

r



 



 

  

 
 

 




 

    
      

 
     

   


 

Hence 
2exp( )I x dx 




    

3 2 1 1 2 3

0.1

0.2

0.3

0.4
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You can evaluate 
2exp( )x x dx




 , but there is no need since the 

integrand is odd and so the result is zero. 

Use integration by parts to evaluate 2 2exp( )
2

x x dx



   using 

  
2xx xe  and the Gaussian integral. 

Cannot explicitly evaluate cumulative probability function, 

 
2

2

1 ( )
( ) exp

22

x y
F x dy



  

 
  

 
 , 

using elementary functions. 

Generally want to convert  2,N    into  0,1N  using the 

substitution 
x

y





 . Then    

x
F x y





 
  

 
 

 y  

and  P X
   

 
 

    
       

   
. 

Symmetry shows that    1y y    . 

3 2 1 1 2 3

0.2

0.4

0.6

0.8

1.0  y
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Central limit theorem states that if we take means over n  samples 

taken from some distribution, 
1

0

1 n

i

i

x x
n





  , then this mean will be 

approximately normally distributed about the population mean as n  

becomes large. 

 

Binomial convergence on Gaussian ( 1 2p  ) 

 

  




