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1 Linear Algebra

1.1 Linear vector spaces

The idea of a linear vector space is central to the analysis of many problems in physics

and mathematics and it is the basic object of study in linear algebra. In particular, it

applies to the study of

• linear simultaneous equations. This involves the study of matrices and their proper-

ties;

• the solutions to linear partial (and ordinary) differential equations abbreviated to PDE

(ODE).

Physical problems that can be tackled include

• the harmonic vibrations of a system about an equilibrium and the natural frequencies

of oscillation. E.g., molecules and vibrational frequencies of absorption of radiation;

• waves in various media;

• problems in diffusion;

• the electrostatic potential of charge distributions;

• Fourier series;

• quantum mechanics.

In the first part of this course we will concentrate on linear algebra applied to matrices

but it is important to understand that we are discussing a particular kind of realization,

or representation, of a linear vector space and that there are many others. For this

reason, it is important to give a formal definition.

1.1.1 Definition of a linear vector space

Notation:

V : a set of elements denoted by bold letters: x,y,u,v etc..
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K: a field consisting of elements called scalars, denoted by unbold letters: a, b, c, k etc..

For us these will be real or complex numbers.

Rules:

• addition: This is a binary operation denoted ”+”. To any x,y ∈ V this rule assigns

an element z ∈ V : z = x + y.

• scalar multiplication: To any a ∈ K and x ∈ V this rule assigns an element

z ∈ V : z = ax.

Definition. V is called a vector space over K, and the elements of V are called

vectors, if the following axioms hold:

A1 For any vectors u,v,w ∈ V , (u + v) + w = u + (v + w). (Associativity.)

A2 For any vectors u,v ∈ V , u + v = v + u. (Commutativity.)

A3 There is a vector in V denoted 0, called the zero vector for which u + 0 = u

∀ u ∈ V .

A4 For each vector u ∈ V there is a vector in V denoted −u for which u + (−u) = 0.

(Inverse.)

A5 For any a ∈ K and any u,v ∈ V , a(u + v) = au + av.

A6 For any a, b ∈ K and any u ∈ V , (a+ b)u = au + bu.

A7 For any a, b ∈ K and any u ∈ V , (ab)u = a(bu).

A8 For the unit scalar 1 ∈ K and any u ∈ V , 1u = u.

Other results follow from these axioms. E.g.,

0u = 0, a0 = 0, (−a)u = −au, au = 0

=⇒ a = 0 or u = 0.
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1.1.2 Examples of vector spaces

i) Let K be an arbitrary field. A vector space is the set of all n-tuples of elements of

K with vector addition and scalar multiplication defined by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) ,

k(a1, a2, . . . , an) = (ka1, ka2, . . . , kan) ,

where ai, bi, k ∈ K. This space is denoted Kn

ii) The set of all n-tuples of real numbers (u1, . . . , un), denoted Rn, is a vector space

over the field R. This follows as an example of i). Likewise, the set of all n-tuples

of complex numbers (z1, . . . , zn), denoted Cn, is a vector space over the field C.

Examples of vectors in R3 are

(1, 2, 5) , (−π, 6.3, e) , (0, 0, 0) .

The last of these is the zero, or null, vector 0.

iii) V is the set of all polynomials in t of degree ≤ n

a0 + a1t + a2t
2 + . . . + ant

n ,

with coefficients ai from a field K. V is a vector space over K with respect to the

usual operations of addition of polynomials and multiplication by a constant.

1.1.3 Linear combinations and linear spans

Let v1, . . . ,vm ∈ V and a1, . . . , am ∈ K and let
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x = a1v1 + . . . + amvm .

Then x is called a linear combination of v1, . . . ,vm.

The set of all such linear combinations of v1, . . . ,vm is a subspace, S, of V . In other

words, S contains all vectors of the form of x above that are generated by all possible

choices of a1, . . . , am ∈ K. This is written

S = {a1v1 + . . . + amvm : ai ∈ K, i = 1, 2, . . . ,m} .

Then we say that the subspace S is spanned or generated by the v’s, and that the

v’s span or generate S.

1.1.4 Linear independence

Suppose that for some a1, . . . , am ∈ K we have

a1v1 + . . . + amvm = 0 ,

Then the vectors v1, . . . ,vm are said to be linearly independent if the only solution

is ai = 0,∀i.

Conversely, if there is a solution with at least one of the a’s non-zero then the vectors

are linearly dependent. Note, that if any of the v’s is the zero vector, 0, then the

vectors are linearly dependent.

1.1.5 Dimension and basis

A vector space V is said to be of finite dimension n or to be n-dimensional, written

dimV = n, if there exist linearly independent vectors e1, e2, . . . , en which span V .

That is, every v ∈ V can be written as a linear combination of the e’s. The sequence

{e1, e2, . . . , en} is then called a basis of V .
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Note that a set of vectors might span V but they do not necessarily form a basis since

they might not be linearly independent. However, given such a set we can systematically

reduce the number of elements until we do have an independent set which then will form

a basis.

The definition of dimension is well defined because it can be shown that every basis of

V has the same number of elements.

1.1.6 Examples of bases

1. A basis for K3 over the field K is

e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1) .

An alternative basis is

w1 = (1, 1, 0) , w2 = (1, 0, 1) , w3 = (0, 1, 1) .

2. Let W be the vector space of polynomials in t of degree≤ n. The set {1, t, t2, . . . , tn}

is linearly independent and spans W . Thus it is a basis of W and so dimW = n+1.

A different basis when, e.g., n = 2 is

{1 + 2t2, t + t2, t2 − 1}.

1.1.7 Coordinates

Given a basis {e1, . . . , en} for V , then any vector v ∈ V can be expressed as
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v = x1e1 + . . . + xnen , xi ∈ K .

Then the n-tuple x = (x1, . . . , xn) are the coordinates of v with respect to the given

basis. If we change the basis the coordinates will change but, of course, v is still the

same vector:

v = y1w1 + . . . + ynwn , yi ∈ K ,

with coordinates y = (y1, . . . , yn).

Note that x,y are themselves vectors since x,y ∈ Kn. Kn is a vector space over the

field K defined earlier.

1.1.8 Linear maps

A mapping A of a vector space V into a vector space U assigns to any vector x ∈ V

another vector y ∈ U . We write either

A : x→ y, or Ax = y.

There might be an inverse (this does not always exist), A−1 defined by

x = A−1y .

HIDDEN
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The map is linear if it satisfies the following properties

(i) A(x1 + x2) = Ax1 + Ax2 for every x1,x2 ∈ V .

(ii) A(αx) = αAx for every x ∈ V and every scalar α in K.

Examples of linear maps

• Ax = ax.

• For position vectors in 3D: Ax = a∧x, a a constant vector, (where “∧” is vector

product).

• For position vectors in 3D: Ax = a · x, a a constant vector, (where “·” is scalar,

or dot, product). Note that here A maps V = R3 into U = R.

Examples of non-linear maps

(i) Ax = x + a.

(ii) For position vectors in 3D: Ax = a|x|x. (|x| is the length of x.)

1.2 Matrices

A matrix is a rectangular array of real or complex numbers. We shall mainly use real

numbers in this course but complex matrices are central to many applications. Some

examples are:

1 2 3

4 5 6

 3.6 2.4

9.3 −4.5




1

3

7

9


(

1 3 7 9
)
.
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Suffix Notation

An m× n matrix has m rows and n columns. The matrix is usually denoted by a bold

upper case letter, A, say, and then aij will denote the jth entry in the ith row:

A = (aij), (A)ij = aij, A =



a11 a12 · · · a1j · · · a1n

a21 a22 · · · a2j · · · a2n

...
...

...
...

...
...

ai1 ai2 · · · aij · · · ain
...

...
...

...
...

...

am1 am2 · · · amj · · · amn


Notes

i) An m×m matrix is called a square matrix.

ii) An m× 1 matrix is a column vector:

v =


v1

v2

...

vm

 .

iii) A 1× n matrix is a row vector:

w =
(
w1 w2 · · · wn

)
.

Examples of suffix notation with vectors
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Take vectors x,y,u,v in any number of dimensions.

y = u + v ⇔ (yi) = (ui) + (vi),

λ = x · y =
∑
i

aibi,

v = (x · y)u⇔ (vj) =
∑
i

xiyi(uj).

Note that un-summed indices should always match on the left and on the right. Summed

indices should always come in pairs and sum from 1 to the maximum value implied by

the dimensions of the object. The Einsten summation convention (which we shall not

follow here, but which many people do) omits the
∑

i: it is implied whenever one has a

pair of repeated indices. We call the sum over pairs of indices a contraction of those

indices.

In what follows it is often useful to understand a general statement by working through

the most simple non-trivial example. E.g., choose the smallest matrices to illustrate the

point.

1.2.1 Algebra of matrices

For given n,m the set of all real (complex) m × n matrices form a vector space over

R (C). We need a rule of addition (+) and multiplication by a scalar which we make

explicit in (a) and (b) below.

(a) Addition of matrices

Let A and B be m× n matrices. Their sum C is an m× n matrix defined by

C = A + B with cij = aij + bij .

In fact the right-hand side is often how we write the equation

in suffix notation (i.e. we often leave out the brackets one

usually writes for matrices; they are implied). E.g.,
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4 5 6

 +

 7 8 9

10 11 12

 =

 8 10 12

14 16 18



(b) Multiplication by a scalar

Let A and B be m× n matrices.

B = λA means bij = λaij i = 1 . . .m, j = 1 . . . n.

The statement of equality of matrices follows if we set λ = 1:

B = A means bij = aij i = 1 . . .m, j = 1 . . . n.

(c) Multiplication of matrices

Matrices A and B can only be multiplied if A is m× n and B is n× p. Then

C = AB

is defined by

cij =

n∑
k=1

aikbkj i = 1 . . .m, j = 1 . . . p,

and the product matrix C is m × p. Note that, written in suffix notation, the left

hand object cij has a row index i and a column index j, and so the right hand side

must do also (k is a dummy index which is summed over): the left-hand side is the

ij − th element of a matrix, as is the right-hand side. We have (again) left out the

brackets for this matrix, leaving them implicit. It is important to note that although

the order matters when we write the equation in matrix form, when we write in suffix
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notation, each term in the sum is just the product of two numbers - the ordering of

these numbers doesn’t matter much.

cij =

n∑
k=1

aikbkj =

n∑
k=1

bkjaik.

The product of three matrices D = ABE is thus written (where E is p× q):

dij =

n∑
k=1

p∑
l=1

aikbklelj, i = 1 . . .m, j = 1 . . . q,

where we have left out the matrix brackets.

An important fact is that the product of two square matrices does not commute in

general. Suppose A and B are both m×m. Then in general AB 6= BA. If this is

the case we say that A and B do not commute. The commutator is defined by:

C = [A,B] ≡ AB −BA , or cij =
∑
k

(aikbkj − bikakj).

Note that it is also very common to leave out the ranges of
the sum (leaving these implicit) and the ranges of i and j,
which are inferred from the sizes of the various matrices: we
have followed this convention in the above equation for the
commutator. Of course, C is also m×m.

Examples of multiplication
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Take vectors

a =


2

4

−2

 , b =


6

4

1

 .

Then

a · b =

3∑
l=1

albl =
(

1 4 −2
)

6

4

1

 =
(

20
)
.

Writing A = (a1i) as a row matrix with 1 row and B = (bi),

(BaT )ij = bi1a1j =


6

4

1

(1 4 −2
)

=


6 24 −12

4 16 −8

1 4 −2


Then defining

C = (cij) =

1 2

3 4

 and D = (dij) =

5 6

7 8

 ,

(CD)ij =

2∑
k=1

cikdkj =

1 2

3 4

5 6

7 8

 =

19 22

43 50


(DC)ij =

2∑
k=1

dikckj =

5 6

7 8

1 2

3 4

 =

23 34

31 46


Note that the 2× 2 matrices here do not commute.
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1.2.2 Some definitions and properties

(a) Transpose

The transpose of an m× n matrix M is the n×m matrix denoted MT given by

the interchange of the rows and columns of M :

(MT )ij = (M )ji , for all i, j.

Note that

(i) (MT )T = M .

(ii)

(AB)T = BTAT

(i, j) element: ∑
k

ajkbki =
∑
k

bkiajk =
∑
k

(BT )ik(A
T )kj

This result generalizes: (ABC)T = CTBTAT etc.

(b) Symmetric and anti-symmetric matrices

We define a symmetric matrix S to be a square matrix which satisfies ST = S.

Thus

sij = sji.

We define an anti-symmetric (or skew-symmetric) matrix A to be a square matrix

which satisfies AT = −A. Thus
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aij = −aji.

Given a general m×m matrix B we can construct its symmetric and anti-symmetric

parts given, respectively, by S and A to be

S =
1

2
(B + BT ) , A =

1

2
(B −BT ) .

Conversely, we may always decompose B as the sum of a symmetric matrix and an

anti-symmetric matrix: B = S + A.

(c) Diagonal matrix

A square matrix A with non-zero entries only on the diagonal: aij = 0 i 6= j. E.g.,
1.2 0 0

0 −3.4 0

0 0 7.6



(d) Unit matrix

The unit or identity matrix is a diagonal matrix denoted 1 or I (for identity) with

elements δij. δij is called Kronecker delta, where δii = 1, δij = 0 i 6= j. E.g., for

n = 3

I = (δij) =


1 0 0

0 1 0

0 0 1


For any matrix A we have IA = AI = A.
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(e) Orthogonal matrix

A square matrix O which satisfies OOT = OTO = I. E.g.,

R(θ) =

cos θ −sin θ

sin θ cos θ


(f) Complex conjugation

If A = (aij) then the complex conjugate is A∗ = (a∗ij).

(g) Hermitian conjugation

If A = (aij) then the hermitian conjugate is A† = (AT )∗ = (A∗)T = (a∗ji).

An hermitian matrix satisfies A† = A (c.f. symmetric matrix) and is important in

quantum mechanics.

(h) Trace

The trace of a matrix is defined for square matrices. For A being m×m, we have

trace(A) =

m∑
i=1

aii .

It is the sum of the elements on the main diagonal of the matrix.

Some properties of trace are:

(i)

trace(AB) = trace(BA)

m∑
i=1

n∑
j=1

aijbji =

n∑
j=1

m∑
i=1

bjiaij

It is sufficient for its definition that A is m× n and B is n×m.
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(ii)

trace(ABC) = trace(CAB)

∑
ijk

aijbjkcki =
∑
kij

ckiaijbjk

(iii) This result can be generalized and holds for any cyclic permutation of the order of

multiplication. For example

trace(A1A2A3A4) = trace(A3A4A1A2) = etc.

A cyclic permutation shifts all elements by a given amount with those elements

shifted off one end being inserted at the other. E.g., 12345 → 45123). (It’s like

moving the numbers around a clockface.)

1.2.3 Inner or scalar product

Can introduce a product of two vectors x,y called the inner or scalar product. (It can

be defined for many kinds of vector space but it is not part of the axioms defining them;

it is an extra optional property.) We now give some well-known examples:

• For real column vectors x,y

x · y =

n∑
i=1

xiyi = xTy .

• For complex column vectors x,y

x · y =

n∑
i=1

x∗i yi = x†y .

Note: in this case x · y = (y · x)∗.
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Then x · x =
∑

i |xi|2 is real and positive or zero.

We define the magnitude of x to be ||x|| =
√
x · x.

(i) If x · y = 0 then x and y are said to be orthogonal.

(ii) A basis e1, · · · , en which satisfies ei·ei = 1, ei·ej = 0, i 6= j is called orthonormal.

Write as

ei · ej = δij .

E.g., in 2D

e1 = (1, 0), e2 = (0, 1) .

1.2.4 Relevance to linear equations

The system of linear algebraic equations

a11x1 + a12x2 + · · ·+ a1nxn = y1

a21x1 + a22x2 + · · ·+ a2nxn = y2

...
...

am1x1 + am2x2 + · · ·+ amnxn = ym

can be written compactly using matrix notation as

Ax = y .

1. The equations relate an n-dimensional column vector x to an m-dimensional column

vector y.
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2. They may be viewed as defining a linear transformation from an n-dimensional vector

space Vn to an m-dimensional vector space Vm.

The problem of solving the equations can be viewed as finding the vector x ∈ Vn

which is mapped under the transformation A to the vector y ∈ Vm. This may not

always be possible or there may not always be unique solution for x. Usually m = n,

but our interpretation applies more generally.

1.3 Determinants

1.3.1 Definition

The solution of the linear equations

a11x1 + a12x2 = y1

a21x1 + a22x2 = y2

can be written

x1

y1a22 − y2a12
=

x2

y2a11 − y1a21
=

1

a11a22 − a12a21

(provided no denominator vanishes), or more neatly as

x1∣∣∣∣∣∣y1 a12

y2 a22

∣∣∣∣∣∣
=

x2∣∣∣∣∣∣a11 y1

a21 y2

∣∣∣∣∣∣
=

1∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣
,

where the determinant is defined as

∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad− bc .
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Similarly, for 3 equations in 3 unknowns:

x1∣∣∣∣∣∣∣∣
y1 a12 a13

y2 a22 a23

y3 a32 a33

∣∣∣∣∣∣∣∣
=

x2∣∣∣∣∣∣∣∣
a11 y1 a13

a21 y2 a23

a31 y3 a33

∣∣∣∣∣∣∣∣
=

x3∣∣∣∣∣∣∣∣
a11 a12 y1

a21 a22 y2

a31 a32 y3

∣∣∣∣∣∣∣∣
=

1∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣
.

Spot the rule. The denominator of xi is the determinant obtained by replacing the i-th

column of (aij) by y.

The 3× 3 determinant is defined by∣∣∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣∣∣ = a

∣∣∣∣∣∣e f

h i

∣∣∣∣∣∣− b
∣∣∣∣∣∣d f

g i

∣∣∣∣∣∣ + c

∣∣∣∣∣∣d e

g h

∣∣∣∣∣∣ .
The general rule is defined recursively and to do this we first define minors and cofac-

tors.

1.3.2 Minors and cofactors

Consider the square n×n matrix A = (aij). Let M ij be the (n−1)×(n−1) submatrix

of A obtained by deleting its ith row and jth column. E.g.,

A =


1 2 3

8 4 −9

12 5 6

 , M 12 =

 8 −9

12 6



The determinant |M ij| is called the minor of the element aij of A.

The cofactor of aij, denoted Aij is the “signed” minor:

Aij = (−1)i+j|M ij| .
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The “signs” (−1)i+j form chess-board pattern with +’s on the main diagonal:


+ − + − · · ·
− + − + · · ·
+ − + − · · ·

etc.


The matrix with the cofactors as its elements (transposed) is called the classical adjoint

of A and is written adjA. It is defined by (adjA)ij = Aji:

adjA =



A11 A21 · · · Aj1 · · · An1

A12 A22 · · · Aj2 · · · An2

...
...

...
...

...
...

A1i A2i · · · Aji · · · Ani
...

...
...

...
...

...

A1m A2m · · · Ajm · · · Anm


1.3.3 General rule for calculating a determinant

Given the square n × n matrix A then the determinant of A, denoted |A| or detA,

is defined by

|A| =
n∑
j=1

aijAij for any fixed value of i,

or

|A| =
n∑
i=1

aijAij for any fixed value of j.

Examples
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Let

A =


1 2 3

−1 4 5

2 7 8

 .

Choosing to fix i = 1 then

|A| = a11A11 + a12A12 + a13A13

= 1 ·

∣∣∣∣∣∣4 5

7 8

∣∣∣∣∣∣− 2 ·

∣∣∣∣∣∣−1 5

2 8

∣∣∣∣∣∣ + 3 ·

∣∣∣∣∣∣−1 4

2 7

∣∣∣∣∣∣
= 1[32− 35]− 2[−8− 10] + 3[−7− 8] = − 12

Or fixing j = 2 get

|A| = a12A12 + a22A22 + a32A32

= −2 ·

∣∣∣∣∣∣−1 5

2 8

∣∣∣∣∣∣ + 4 ·

∣∣∣∣∣∣1 3

2 8

∣∣∣∣∣∣− 7 ·

∣∣∣∣∣∣ 1 3

−1 5

∣∣∣∣∣∣
= −2[−8− 10] + 4[8− 6]− 7[5 + 3] = − 12

The neat way to do this is to pick a row or column with the most zeros.

A =


1 0 3

−1 0 5

2 7 8

 .

Then we choose j = 2 and get
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|A| = − 7 ·

∣∣∣∣∣∣ 1 3

−1 5

∣∣∣∣∣∣ = − 56 .

It’s more work if you choose j = 3, for instance.

1.3.4 Permutations and determinants

A notion central to understanding determinants is the idea of a permutation. Here we

will concentrate on n = 3 but the approach can be generalised to any n.

A permutation of the numbers {1, 2, 3} is a rearrangement (or a sorting) of the numbers

into a different order. So

123→ 213

is a permutation which we call σ = 213. It is understood that we started with 123. In

general there are n! different permutations of n numbers or objects; the permutations

simply specify the different orders in which they can be laid out.

A useful operation is to interchange neighbouring numbers. E.g. 213→ 123.

We count the number of pairwise interchange of neighbours that get us back to 123. If

this is even (odd) then we say that σ is even (odd). For n = 3 then

123 231 312 are even

132 213 321 are odd

[This works for any n so, for example, 562341 is odd.]

We now define an important object. This is called the Levi-Cevita tensor, the epsilon

tensor or the totally antisymmetric tensor. For n = 3 it is defined to be

εj1j2j3 =


0 if any pair of j1j2j3 are equal

+1 if σ = j1j2j3 is even

−1 if σ = j1j2j3 is odd
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Thus

ε123 = ε231 = ε312 = 1, ε132 = ε213 = ε321 = −1 all others are 0 .

Note that εj1j2j3 is antisymmetric under the interchange of any pair of indices.

ε312 = −ε213 .

All of these results generalise to n objects and indices. In particular, for n = 2 we have

ε11 = ε22 = 0, ε12 = 1, ε21 = −1 .

An important result is illustrated by the example of 3× 3 matrices. It is

|A| =
∑
j1j2j3

εj1j2j3a1j1a2j2a3j3

=
∑
i1i2i3

εi1i2i3ai11ai22ai33 .

The first sum is over ji = 1, 2, 3 for each ji and in the second sum similarly over the

i’s.

Remarks

• A similar result is easily checked for n = 2. It can be generalized to arbitrary n.

• The sum on the right-hand side consists of 3! = 6 terms, corresponding to the

number of permutations, each of which is a product of 3 elements from (aij); each

term has exactly one element from each row and column.

To get a feel for this expression we illustrate with n = 3.

1. let a, b, c be 3-dimensional vectors. Then the well-known vector product given by

a = b ∧ c (written also as b× c) has elements



1 LINEAR ALGEBRA 24

ai =
∑
j,k

εijkbjck :

a1 = b2c3 − b3c2 , a2 = b3c1 − b1c3 , a3 = b1c2 − b2c1 .

2. Then by construction we clearly have

b·(b∧c) =
∑
i

bi

∑
jk

εijkbjck

 =
∑
ijk

εijkbibjck = 0.

The last result follows because εijk = −εjik; it is anti-symmetric under i ↔ j

whereas bibj is obviously symmetric under this interchange. Similarly, c · (b∧c) = 0.

3. Consider

A =


a1 a2 a3

b1 b2 b3

c1 c2 c3


Then

|A| =
∑
ijk

εijkaibjck = a · (b ∧ c) ,

the determinant of a 3×3 matrix is the scalar triple product of its rows (or columns)

treated as vectors.

4. One important general result is that if the same vector occurs twice anywhere in

the sum involving the ε-tensor (i.e., in the contraction of vectors with ε) then the

answer is zero. E.g.,

∑
j2j3

εj1j2j3vj2vj3 = 0 .
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The result follows because the permutation needed for j2 ↔ j3 is always odd; εj1j2j3

is anti-symmetric under interchange of any pair of indices.

It also follows immediately that if a matrix has any two rows (or columns) equal then

its determinant is zero.

5. Consider the 3× 3 matrix A = (aij). Then the cofactors Aij are given by

A1j =
∑
j2j3

εjj2j3a2j2a3j3 = (a2 ∧ a3)j ,

A2j =
∑
j1j3

εj1jj3a1j1a3j3 = (a3 ∧ a1)j ,

A3j =
∑
j1j2

εj1j2ja1j1a2j2 = (a1 ∧ a2)j .

Here ai = (ai1, ai2, ai3) – the i-th row of A written as a (row) vector. It is easy to

verify that for each j these are the correct “signed” sub-determinants. Also, we see

that, for example,

|A| =
∑
j1j2j3

εj1j2j3a1j1a2j2a3j3 =
∑
j1

a1j1A1j1 ,

which recovers our earlier expression for |A|.

We see also that

∑
k

a2kA1k =
∑
k

a3kA1k = 0.

This follows because

(a) It is the scalar triple product with two vectors the same.

(b) It is the determinant of a matrix with two rows the same.

(c) When we unpack the sums we see that the same vector (either a2 or a3) occurs

twice in the contraction with ε.



1 LINEAR ALGEBRA 26

The general result for arbitrary n is that

∑
k

aikAjk =

{
|A| i = j

0 i 6= j
.

As in (b) above, for i 6= j this is the determinant of a matrix with two rows the

same.

In matrix notation we have

∑
k

aik Ajk︸︷︷︸
(adjA)kj

= δij |A| or

A(adjA) = (detA)I.

1.3.5 Properties of determinants

We collect here properties mentioned above and a few extra ones with examples. Many

of these properties can be derived from the equations for determinants of n×n matrices:

|A| =
∑

j1,j2,...,jn

εj1j2...jna1j1a2j2 . . . anjn =
∑

i1,i2,...,in

εi1i2...inai11ai22 . . . ainn.

1. Interchanging any two rows or columns of a matrix changes the sign of its determi-

nant.

2. |A| = 0 if any two rows or columns are the same.

3. The matrix obtained by multiplying all the elements of any one row (or column) of

A by λ has determinant λ|A|.
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4. Adding a multiple of one row (column) to another row (column) leaves the determi-

nant unchanged. This is a useful way of reducing the calculation of |A|. E.g., our

3× 3 example from before:

A =


1 2 3

−1 4 5

2 7 8

 .

R2→ R2 + R1:

A =


1 2 3

0 6 8

2 7 8

 .

R3→ R3− 2×R1:

A =


1 2 3

0 6 8

0 3 2

 .

R3→ R3− 1/2×R2:

A =


1 2 3

0 6 8

0 0 −2

 .

Then easily find |A| = 1× 6× (−2) = −12.

We have reduced the matrix to upper triangular form by performing row opera-

tions . We could similarly define lower triangular form and column operations.

The determinant is then just the product of the elements on the main diagonal.
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This is a much faster method for large matrices. The original definition requires

O(n!) mathematical operations (×, +), whereas this new method of reduction

to upper (lower) triangular form requires only O(n3) operations. (Computationally,

there can be issues with accuracy depending on the values of the matrix elements.)

5. det(AB) = (detA)(detB). This follows directly from the definition in terms of

the ε-tensor but is fiddly to show. It relies on a useful result that I state for n = 3

but is easily generalized:

∑
j1j2j3

εj1j2j3ai1j1ai2j2ai3j3 = |A|εi1i2i3 .

We can show this by interchanging two i’s on both sides and noting that this is equiv-

alent to interchanging the associated pair of j’s on LHS together with multiplying

by (−1) because the ε-tensor is antisymmetric under interchange of j’s.

6. |A| = |AT |. Using rows or columns in the formula are equivalent. E.g., consider

A =


a1 a2 a3

b1 b2 b3

c1 c2 c3

 AT =


a1 b1 c1

a2 b2 c2

a3 b3 c3

 .

|A| = a1(b2c3 − b3c2)− a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

|AT | = a1(b2c3 − c2b3)− b1(a2c3 − c2a3) + c1(a2b3 − b2a3)

This can be proved from the equation in item 5 and is generalisable to n×n matrices.

7. For ordinary 3D vectors in standard notation:

u ∧ v =

∣∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣ , curl v = ∇∧ v =

∣∣∣∣∣∣∣∣
i j k

∂/∂x1 ∂/∂x2 ∂/∂x3

v1 v2 v3

∣∣∣∣∣∣∣∣ .
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8. The (signed) volume of the parallelepiped in 3D with sides a, b, c is V (a, b, c) =

a · (b ∧ c). Thus

V (a, b, c) =

∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣
The general result, which can be proved by induction, is that the (signed) n−dimensional

volume of a parallelepiped in n-dimensions with sides a1,a2, · · ·an is

V (a1,a2, · · ·an) = |A| where A =


a1 -

a2 -

... ...

an -


Of course, here A = (aij) as usual. In all examples we can use columns instead of

rows.

9. A result that is proved using det(AB) = (detA)(detB) can be illustrated in 3D.

Given two parallelepipeds defined by (x1,x2,x3) and (y1,y2,y3) which are related

by

Axi = yi, i = 1, 2, 3

(treating xi and yi as column vectors), then

V (y1,y2,y3)

V (x1,x2,x3)
=
|(y1 y2 y3)|
|(x1 x2 x3)|

=
|A (x1 x2 x3)|
|(x1 x2 x3)|

= |A||(x1 x2 x3)|
|(x1 x2 x3)|

= |A|.



1 LINEAR ALGEBRA 30

We can see that this makes sense in the case that A is diagonal. With canonical

basis vectors the length unit in the ei direction is scaled by aii (e.g., the length unit

in (0, 1, 0) direction is scaled by a22), and so the volume is scaled by a11a22a33 ≡ |A|.
This generalizes to n× n matrices and can be the basis of the general proof.

HIDDEN

1.4 Inverse of a matrix

We consider only square matrices from now on.

Suppose we can find a matrix A−1 such that

A−1A = I .

We then can find the solution to the system of linear algebraic equations

Ax = y ,

by premultiplying both sides by A−1 to give

A−1Ax = (A−1A)x = Ix = x = A−1y ,
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and hence we determine x.

The question is whether given A that A−1 exists and whether it is unique.

1.4.1 Uniqueness of inverse

If A−1 exists, it is unique and is both the left and right inverse. By this we mean

If LA = I then L is the left inverse of A

If AR = I then R is the right inverse of A.

Suppose that L is not unique, i.e., L1A = I and L2A = I. Then

L1 −L2 = (L1 −L2)I = (L1 −L2)AR

= (L1A−L2A)R = (I − I)R = 0 .

Hence, L1 = L2 and so L (and likewise R) is unique.

Now

L = LI = LAR = IR = R ,

and so the left and right inverses are the same.

1.4.2 Existence and construction of inverse

Earlier in this course we derived the important result that

A(adjA) = (detA)I .

Thus, if A−1 exists, we have a ready-made construction of the right inverse of A and

hence of A−1, namely

A−1 =
adjA

detA
.
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The 3× 3 case is familiar. Suppose

A =


a -

b -

c -

 ,

then

A−1 =
1

a · (b ∧ c)

b ∧ c c ∧ a a ∧ b

? ? ?

 .

This works because
a -

b -

c -


b ∧ c c ∧ a a ∧ b

? ? ?

 =


a · (b ∧ c) 0 0

0 b · (c ∧ a) 0

0 0 c · (a ∧ b)

 .

If |A| = 0 then A−1 does not exist and we say that A is a singular matrix. This is

the matrix generalization of the statement that x× 0 = 1 has no solution for x.

However, a matrix whose determinant is zero is still not trivial. Some examples are
0 0 0

1 2 3

4 5 6

 ,


5 7 9

6 9 12

4 5 6

 .

These matrices are equivalent under row operations. If |A| = 0 then at least one row
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(column) can be reduced to zeros by row (column) operations.
0 4 0 7

0 3 0 5

0 −1 0 9

0 1 0 0

 ,


15 4 18 7

11 3 13 5

7 −1 17 9

2 1 1 0

 .

These two matrices are equivalent under the column operations C1→ C1 + 2× C2 +

C4, C3→ C3 + C2 + 2× C4.

1.4.3 Orthogonal matrices

A square matrix O which satisfies OOT = OTO = I is called an orthogonal matrix.

Thus, O−1 = OT . We have

|OTO| = |O|2 = |I| = 1, =⇒ |O| = ± 1 .

(i) Rotations The rotation of a vector in Rn is a linear map given by an orthogonal

matrix. For n = 2:

R(θ) =

(
cos θ −sin θ

sin θ cos θ

)
n = 2 Generally, a rotation of column vector x through angle θ gives a vector y

where

y = R(θ)x.

Rotations preserve the length of the vector and so

xTx = yTy = xT (RTR)x .

This property is true for all x and hence we deduce that RTR = I. We may prove

that RRT = I by noting that x = RTy and repeating the argument. For rotations,

|R| = 1.
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(ii) Reflections

The vector x′ obtained by reflecting x in a plane with unit normal n is x′ = x −

2(x · n)n. In matrix notation, writing n as a column vector:

x′ = Ox, O = I − 2nnT , or (O)ij = δij − 2ninj

in suffix notation.

• Note that OT = O; from this and OOT = I we know that O is its own inverse.

This is clear geometrically – two reflections in the same plane get you back to

original vector.

• Use nTn = 1 to show OTO = I:

OTO = O2 = (I−2nnT )2−I−4nnT +4nnTnnT = I.

For reflection |O| = −1. Check this (without loss of generality) by choosing

nT = (0, 0, 1). Then O = diag(1, 1,−1) (diagonal matrix with these elements on

diagonal).

• Two successive different reflections: O1 followed by O2 give a total transformation,

or map, R = O2O1. Now, R is orthogonal:

RRT = (O2O1)(O2O1)T = O2O1O
T
1 O

T
2 = I .

and

|R| = |O2O1| = |O2||O1| = 1.

Thus R is a rotation.
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1.5 Linear equations

1.5.1 Cramer’s rule

If Ax = y and |A| 6= 0, then

x = A−1y =
(adjA)y

|A|
.

Then

xi =
1

|A|
∑
k

Akiyk .

We can rewrite the RHS and we get

xi =
1

|A|

∣∣∣∣∣∣∣∣∣∣∣

a11 · · · y1 · · ·
a21 · · · y2 · · ·

... ...

an1 · · · yn · · ·

∣∣∣∣∣∣∣∣∣∣∣
where the y’s replace the i-th column in A. This is Cramer’s rule.

1.5.2 Uniqueness of solutions

Consider the set of equations

Ax = y ,

where A is m × n, x is n × 1 and y is m × 1 (i.e., column vectors). Given y, we

wish to investigate the possible solutions to these m equations for the n unknowns

x1, x2, · · · , xn.
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• We may have redundant equations in this set. A redundant equation is some linear

combination of the others and should be omitted. If there are redundant equations

the equations will be linearly dependent.

• There may be inconsistent equations in the set. This is best seen by example:

4 3

4 3

x1

x2

 =

4

9




2 3 4

−4 6 5

0 12 13



x1

x2

x3

 =


1

3

7

 .

The first example is more obvious. In the second, on LHS R3 = 2× R1 + R2 but

7 6= 2× 1 + 3.

The system of equations is Inconsistent if the LHS is linearly dependent but the

corresponding y-values on RHS do not obey the same linear relationship. Then no

solution exists.

We can first check linear dependence on the LHS by inspecting the entries in A and

then, if necessary, inspect the entries in y to check for redundancy or inconsistency.

(1) If m < n the system is underdetermined; there is not enough information to fix

all the x’s. However, unless the equations are inconsistent, it is possible to express

some of the x’s in terms of the others. That is, to find a family of solutions.

E.g., m = 1, n = 2:

a11x1 + a12x2 = y1 .

This defines a straight line in the 2D space of (x1, x2).

In general, the family of solutions will lie in an (n − m) dimensional subspace (or

larger if there are redundant equations) of the n-dim space in which x lies. E.g., in

3 dimensions (and assuming no redundancy) m = 2, n = 3 is a line, m = 1, n = 3

is a plane.

(2) If m > n then the LHS of the equations must be linearly dependent since the vectors

a1 · · ·am lie in an n-dim space. Then, the different cases are
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(i) The equations are inconsistent and so there is no solution. In this case we say

that the system is overdetermined. E.g., 3× 2 case
3 1

5 2

13 5


x1

x2

 =


1

4

12

 .

On LHS R3 = R1 + 2×R2 but on RHS 12 6= 1 + 2× 4.

(ii) There are redundant equations and we can discard them and so reduce m. If, after

discarding them

• m > n: then we are still overdetermined as in (2)(i);

• m < n: then the system is underdetermined as in (1);

• m = n: this is an important case.

(3) The n× n case.

(i) |A| 6= 0. In this case the rows (and columns) of A are linearly independent and so

the equations are neither redundant nor inconsistent. The inverse A−1 exists and

is unique. The system of equations has the solution

x = A−1y .

In the special case y = 0 the only solution is x = 0. Thus,

Ax = 0 and |A| 6= 0 =⇒ x = 0 .

Note, that since the columns of A treated as vectors c1, c2, · · · , cn are linearly

independent they form a basis for Rn. Thus

A =

c1 c2 · · · cn

? ? ?

 .
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The equations are then just

y = x1c1 + x2c2 + · · · + xncn ;

the xi’s are the coordinates of y in this basis. Hence, if y = 0, the zero vector,

we expect all coordinates xi = 0,∀ i.

• In general we can solve the equations Ax = y by performing row operations to

both sides (i.e., on A and y) chosen to reduce A to upper triangular form. The

equations then solve iteratively.
1 4 3

2 9 5

−1 −1 −4



x1

x2

x3

 =


9

17

−8


Then operations R2→ (R2−2×R1), R3→ (R3+R1), R3→ (R3−3×R2)

give 
1 4 3

0 1 −1

0 0 2



x1

x2

x3

 =


9

−1

4


We can now solve, in order, x3 = 2, x2 = 1, x1 = −1. Also, |A| = 2.

This is an example of Gaussian elimination.

(ii) |A| = 0, y = 0. We seek solutions of the homogeneous equations

Ax = 0 .

It is now convenient to think of the rows of A being vectors r1, r2, · · · , rn:

A =


r1

-

r2
-

...
...

rn -

 .
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The r’s are linearly dependent, and let the greatest number of independent vectors

be k. So the r’s span a subspace Sr of Rn, with dimSr = k.

The equations are now written

x · ri = 0, i = 1, 2, · · · , n .

Consider an example with n = 3: suppose that k = 2 and so there are two linearly

independent vectors in r1, r2, r3. Choose these to be r1, r2. Then they form a basis

for the 2D space Sr (“r” for row). The equations to be solved are

x · r1 = 0, x · r2 = 0, x · r3 = 0 .

The trick is to find a vector z that does not lie in Sr, and z = r1∧r2 is the obvious

choice. By construction z · ri = 0, i = 1, 2, 3. Then clearly

Az = 0 ,

and hence we deduce the solution for x to be

x = λz ≡ λ(r1 ∧ r2) ,

for any value of λ.

The result for the general case stated above is that there will be (n−k) independent

vectors z1, · · · , zn−k that do not lie in Sr so that for any s ∈ Sr then s ·zi = 0,∀ i.

Since

Azi = 0, i = 1, 2, · · · , (n− k),

the solution for x is of the form
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x =

n−k∑
i=1

αizi ,

for any αi, i = 1, 2 · · · , (n− k).

(The space spanned by z1, z2, · · · , zn−k is called the kernel of A.)

(iii) |A| = 0, y 6= 0.

The column vectors of A, denoted c1, c2, · · · , cn, referred to in (i) are linearly

dependent and so do not form a basis for Rn but rather only span a subspace

Sc ⊆ Rn (“c” for column). If the greatest number of independent vectors is k, then

Sc has dimSc = k. (Note, that although Sc and Sr have the same dimension they

are generally not the same subspace.)

Look again at the equation in the form

y = x1c1 + x2c2 + · · · + xncn .

• If y does not lie in the subspace Sc (y /∈ Sc), there can be no solution for x. (Sc is

called the image of A since A must map every vector x ∈ Rn into Sc.) Consider

an example with n = 3:
1 −1 1

2 5 9

1 3 5



x1

x2

x3

 =


−1

12

7

 , .

The columns of the matrix are linearly dependent: c3 = 2 × c1 + c2. One can

choose the basis for the 2 dimensional space Sc to be
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c1 =


1

2

1

 , c2 =


−1

5

3

 .

In a manner similar to before, consider w = c1 ∧ c2. Here

c1 ∧ c2 =


1

−4

7

 .

Since c1, c2, c1 ∧ c2 do form a basis for R3 we can write

y = p1c1 + p2c2 + p3c1 ∧ c2 .

The point is that if p3 6= 0 then y does not lie in Sc and there is no solution. The

condition for y to lie in Sc is

y · c1 ∧ c2 = 0.

This is satisfied by y as given in the example, but it wouldn’t be if instead the RHS

were y = (2, −2, 8)T for example.

The result for the general case stated above is that there will be (n−k) independent

vectors w1, · · · ,wn−k that do not lie in Sc so that for any s ∈ Sc then s·wi = 0,∀ i.
The conditions for a solution for x to exist are then

y ·wi = 0 i = 1, 2, · · · , (n− k) .

Suppose these conditions are satisfied and we find a solution x0: Ax0 = y. This

solution is not unique since we clearly also have

A(x0 + αz) = y, where Az = 0 .
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Thus, the most general solution to Ax = y in this case is

x = x0 +

n−k∑
i=1

αizi ,

where the zi satisfy Azi = 0, i = 1, 2, · · · , (n− k) as explained in (ii).

1.6 Eigenvalues and eigenvectors

If

Av = λv ,

where A is n× n, λ is a scalar and v 6= 0, then

• λ is an eigenvalue of A

• v is the eigenvector of A corresponding to the eigenvalue λ.

(i) Acting (or operating) on v with A scales it by λ leaving the direction unchanged.

(ii) If v is an eigenvector then so is αv.

We can then write

Av = λIv , =⇒ (A− λI)v = 0 .

The only solution is v = 0 except for special values of λ for which det(A− λI) = 0.

Thus, we seek solutions for λ to

det(A− λI) =

∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

...

an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣∣∣
≡ PA(λ) = 0 .

This determinant is a polynomial of degree n in λ and is called the characteristic

polynomial PA(λ) of A. It is degree n since
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• each term in PA(λ) is n-th order in the elements and contains one element from

each row and column.

• The product of a’s on the diagonal is one such term and this contains λn.

PA(λ) has n roots and these are the eigenvalues λ1, λ2, · · · , λn. The set of eigenvalues

is called the spectrum of A. E.g., consider

A =

−2 6

6 7

 . PA(λ) =

∣∣∣∣∣∣−2− λ 6

6 7− λ

∣∣∣∣∣∣
= (−2− λ)(7− λ)− 62 = λ2 − 5λ− 50 = 0

=⇒ λ = 10,−5 .

Here A is symmetric.

The eigenvalues may be complex even if the entries in A are real, e.g.

A =

cos θ −sin θ

sin θ cos θ

 . PA(λ) =

∣∣∣∣∣∣cos θ − λ −sin θ

sin θ cos θ − λ

∣∣∣∣∣∣
= (cos θ − λ)2 + sin 2θ = λ2 − 2λcos θ + 1 = 0

=⇒ λ = e±iθ .

Here A is orthogonal and is a rotation matrix: the eigenvalues give the angle of rotation.

(i) det(A − λI) = PA(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) . Evaluate with λ = 0

and find important result

detA =

n∏
i=1

λi .
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(ii) If |A| = 0 then at least one eigenvalue is zero and the corresponding eigenvectors

satisfy

Av = 0 .

This homogeneous equation was discussed earlier, and we can see that the set of

eigenvectors with λ = 0 will span the kernel of A; the space of vectors annihilated

by A.

(iii) By inspecting the definition of PA(λ) and the coefficient of the λn−1 term we can

show that

trace(A) =

n∑
i=1

λi .

(iv) For real matrices the coefficients in PA(λ) are real and so if any λ are complex then

they must come in complex-conjugate pairs. The number of real eigenvalues (and

eigenvectors) can therefore be less than n; there are none in the 2 × 2 rotation

example above when θ 6= 0, π.

Each eigenvalue λa has its corresponding eigenvector va:

Ava = λava, a = 1, 2, · · · , n.
Since αv will also satisfy the eigenvalue equation, we can choose α so that v is

normalized, usually to length 1. Using the inner (or scalar) product we can choose

the eigenvectors so that va · va = 1.

1.6.1 Real symmetric matrices

Defined by A = A∗ = AT .
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1. A real symmetric matrix has real eigenvalues

Av = λv (∗)

Av∗ = λ∗v∗ complex conjugate

(v∗)TA = λ∗(v∗)T transpose (†)

(v∗)TAv = λ(v∗)Tv left multiply (*) by (v∗)T

(v∗)TAv = λ∗(v∗)Tv right multiply (�) by v

(λ− λ∗)(v∗)Tv = 0 subtract

Since (v∗)Tv 6= 0 we deduce that (λ− λ∗) = 0 and hence that λ is real.

The eigenvector v is therefore real since it solves real equations with real coefficients.

2. The eigenvectors corresponding to different eigenvalues of a symmetric matrix are

orthogonal. We prove this using a similar procedure to above.

Av1 = λ1v1

vT1 A = λ1v
T
1 transpose

vT1 Av2 = λ1v
T
1 v2 right multiply by v2 (1)

Similarly,

Av2 = λ2v2

vT1 Av2 = λ2v
T
1 v2 left multiply by vT1 (2)

Subtracting (1) − (2) we get

(λ1 − λ2)vT1 v2 = 0 .

Since λ1 6= λ2 we deduce that vT1 v2 = 0.
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(i) If some of the λ’s coincide (“degeneracy”) there are still n linearly independent

eigenvectors which can be made to be orthogonal. This is done by choice of suitable

linear combinations of those v’s corresponding to the degenerate eigenvalues.

(ii) Let us normalise each va to unit magnitude. The eigenvectors then comprise an

orthonormal basis which we now denote e1, · · · , en. So

Aea = λaea, ea · eb = eTaeb = δab .

We learn that if we want to choose a nice basis when working with A we should

choose the basis given by its orthonormal eigenvectors.

1.6.2 Diagonalization of real symmetric matrices

Consider the n× n matrix X whose i-th column is ei:

X =

e1 e2 · · · en

? ? ? ?


Now

XTX =


e1 -

e2 -

... ...

en -


e1 e2 · · · en

? ? ? ?

 =


1 0 · · · 0

0 1 · · · 0
... ... ... ...

0 0 · · · 1

 .

So

XTX = I.
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Thus

• X−1 = XT .

• XTX = XXT = I.

• X is an orthogonal matrix.

• detX = 1.

Now,

AX = A

e1 e2 · · · en

? ? ? ?

 =

λ1e1 λ2e2 · · · λnen

? ? ? ?

 .

Thus

A′ = XTAX =


λ1 0 · · · 0

0 λ2 · · · 0
... ... ...

0 0 · · · λn

 ,

is a diagonal matrix with diagonal elements given by the eigenvalues of A.

Clearly, A′ has the same eigenvalues as A but its eigenvectors are the canonical basis:

e′1 =


1

0
...

0

 , e′2 =


0

1
...

0

 , etc.

1. Given Ax = y we can write
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A(XXT )x = y

(XTAX)XTx = XTy

A′x′ = y′,

with x′ = XTx, y′ = XTy. Clearly, in the special case of the eigenvectors:

e′i = XTei .

2. What are the coordinates of x in the basis of the eigenvectors {e1, e2, . . . , en}?

x =

n∑
i=1

xiei .

Then

x′ = XTx =
n∑
i=1

xiX
Tei =

n∑
i=1

xie
′
i =


x1

x2

...

xn

 .

The required coordinates xi, i = 1 . . . n are simply the entries in x′.

3. Determinants

|A′| = |XTAX| = |XT ||A||X| = |A| ,
since |X| = 1. Then, we have |A′| =

∏n
i=1 λi = |A|, the result we derived earlier.

Let’s look at the earlier example

A =

−2 6

6 7

 , λ1 = 10, λ2 = −5.
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We now search for e1. This satisfies

(
−2− λ1 6

6 7− λ1

)(
x

y

)
≡

(
−12 6

6 −3

)(
x

y

)
= 0 .

These two equations are multiples of each other (by construction). Then

−12x + 6y = 0 =⇒ y = 2x.

The normalized vector is

e1 =

1/
√

5

2/
√

5

 .

e2 can be derived in a similar fashion, but we also know it is orthogonal to e1. Hence,

e2 =

 2/
√

5

−1/
√

5

 .
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2 Partial Differential Equations

2.1 Introduction to PDEs

Often, we wish to investigate the behaviour of functions of more than one variable, eg

• The vibrating string where the displacement at position x and time t is y(x, t).

• The amount of a substance at x and t diffusing in a medium measured by its con-

centration Θ(x, t), eg an ink drop in water.

• The electrostatic potential φ(x, y) due to a distribution of charge with charge density

ρ(x, y).

Each of these functions satisfies a partial differential equation (PDE) characteristic

of the physical phenomenon being studied. A PDE is an equation relating a function

f(x, y, . . .) of more than one variable and its partial derivatives with respect to x, y, . . .

We define the notation

fx =
∂f

∂x
, fxy =

∂2f

∂x∂y
, etc,

where each suffix denotes partial differentiation with respect to (w.r.t) that variable.

The PDE is then of the form

F(x, y, . . . , fx, fy, . . . , fxx, fxy, fyy, . . .) = 0.

• The order of the PDE is the order of the highest derivative appearing in F.

• The PDE is linear if F contains no powers of f (or its derivatives) different to one

(zero doesn’t count).
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To define a unique solution to an ordinary differential equation (ODE) we need extra

pieces of information in the form of the values of f and/or its derivatives at a number

of points to fix the arbitrary constants of integration. These are given by the particular

conditions of the system being studied.

To obtain a unique solution to a PDE we need extra information in the form of values

of f etc., on surfaces in (x, y, . . .) space. Usually, a solution is sought for (x, y, . . .)

in some region D and the extra information or boundary conditions are given on all

or part of the boundary ∂D of this region. They fix arbitrary functions arising in the

integration. E.g.,

σ(x, y) = y2 + g(x) ,
∂σ

∂y
= 2y, independent of g(x).

σ(x, y) = yf (x) ,

y
∂σ

∂y
= σ, independent of f (x).

It is generally a hard problem to work out just how much information is needed.

In these lectures we shall study examples of linear PDEs of second order in the context

of their physical application.

2.2 Physical derivation of important equations

2.2.1 The wave equation

HIDDEN
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For our first physical example, we take a look at the vibrating string. Let the string be

under tension T with mass per unit length ρ. The displacement of the string at position

x and time t is y(x, t).

Consider element AB of length dx.

• The transverse force F obtained by resolving in the y-direction is (for small displace-

ments)

F ≈ T (slope at B − slope at A)

= T

(
∂y

∂x
(x + dx, t)− ∂y

∂x
(x, t)

)
≈ T

∂2y

∂x2
dx .

• The mass of ths string element AB is ρdx.

Then Newton’s Law is

T
∂2y

∂x2
dx = ρdx

∂2y

∂t2
.

This is the wave equation for wave motion in the string:

∂2y

∂x2
=

1

c2

∂2y

∂t2
, Wave equation

where c =
√
T/ρ. We shall see that c is the velocity of the waves.

For problems in higher dimensions, such as sound waves, vibrations of a drum membrane

etc, the equation becomes

∇2ψ(x, t) =
1

c2

∂2ψ(x, t)

∂t2
,

where ψ(x, t) is the displacement from equilibrium.

Here, the boundary conditions are the initial conditions for the position and velocity of

each segment of the string. We need
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y(x, 0) = y0(x) , the initial position,
∂y

∂t
(x, 0) ≡ yt(x, 0) = v0(x) , the initial velocity .

2.2.2 The heat or diffusion equation

Consider a substance diffusing in 1D and let the concentration (i.e., density) be Θ(x, t)

at position x and time t.

HIDDEN

The rate of diffusion from A to B is proportional to the concentration gradient.

R(A→ B) = −κ∂Θ(x, t)

∂x
, R(B → C) = −κ∂Θ(x + ∆x, t)

∂x
,

Here κ is the constant of diffusion.
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Hence the rate of change of substance in region B is

∂[Θ(x, t)∆x]

∂t
= R(A→ B)−R(B → C)

= κ

[
∂Θ(x + ∆x, t)

∂x
− ∂Θ(x, t)

∂x

]
.

OR

∂Θ(x, t)

∂t
= κ

∂2Θ(x, t)

∂x2
. Heat/Diffusion equation

A drop of ink in still water spreads out as a cloud with density Θ(x, t) at time t. Θ(x, t)

obeys the 3D Diffusion equation

∂Θ(x, t)

∂t
= κ∇2Θ(x, t) .

A closely related equation is the Schrödinger equation for a free particle in quantum

mechanics:

i~
∂ψ(x, t)

∂t
= − ~2

2m
∇2ψ(x, t) .

~ is Planck’s constant and m is the particle mass. The analogy with the heat equation

is important.

The boundary condition in this case is to give the initial value of Θ:

Θ(x, 0) = Θ0(x) .

This is physically sensible since the spot of ink has an initial shape which is all we need

to know to predict how it will spread.

2.2.3 Laplace’s equation

Consider the temperature distribution φ(x, y) in a 2D body in equilibrium: φ is indepen-

dent of time t.
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Qx (Qy) is the heat-energy flux in the x (y) direction.

HIDDEN

The phenomenological physical law giving Qx and Qy is

Qx = −σ∂φ(x, y)

∂x
∆y ,

Qy = −σ∂φ(x, y)

∂y
∆x .

I.e., Q is proportional to minus the temperature gradient and the length of the edge.

The constant of proportionality is the thermal conductivity σ.

The total influx of heat-energy is zero. Thus

[(
Qx +

∂Qx

∂x
∆x

)
−Qx

]
+

[(
Qy +

∂Qy

∂y
∆y

)
−Qy

]
= 0 ,

=⇒
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∂Qx

∂x
∆x+

∂Qy

∂y
∆y = 0

OR

(
∂2φ

∂x2
+
∂2φ

∂y2

)
(−σ∆x∆y) = 0 .

Thus

∂2φ

∂x2
+
∂2φ

∂y2
= 0 . Laplace’s Equation

Another application is to the electrostatic potential φ(x) due to a distribution of charge

density ρ(x). The electric field satisfies

∇ ·E(x) =
1

ε0

ρ(x), and E(x) = −∇φ(x) .

Hence, we obtain

∇2φ(x) = − 1

ε0
ρ(x) , Poisson’s equation.

This reduces to Laplace’s equation when ρ(x) = 0.

The boundary conditions are more varied for different problems here. They typically

take one of two forms giving data on the whole boundary ∂D to the region D where the

solution is needed. The two main choices are

(i) Dirichlet condition

Give the value of φ on ∂D. This would be typical if we know the temperature on

the boundary and want to know it in the interior.

φ(x) = φ0(x), x ∈ ∂D .
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(ii) Neumann condition

Give the normal derivative of φ on ∂D. This is typical of electrostatic problems

where we are given the electric field E at the boundary and wish to calculate the

potential φ inside.

n(x) · ∇φ(x) ≡ ∂φ

∂n
(x) = φn(x)

{
x ∈ ∂D,
n(x) is unit surface normal at x

.

Note that n(x) · ∇φ(x) = −n(x) ·E(x).

It is possible to generalize and give a linear combination αφ(x) + β
∂φ

∂n
on ∂D.

2.3 Classification

This is a statement of terminology.

Consider the general form of a linear, 2nd order PDE in 2D

a
∂2ψ

∂x2
+ 2b

∂2ψ

∂x∂y
+ c

∂2ψ

∂y2
+ f

∂ψ

∂x
+ g

∂ψ

∂y
+ hψ = 0,

where a, b, etc. are constants.

(i) Elliptic

The equation is elliptic if b2 < ac. One example is Laplace’s equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0 .

(ii) Parabolic

The equation is parabolic if b2 = ac. One example is the heat equation in one space

dimension, where t is considered to be the second dimension

κ
∂2ψ

∂x2
− ∂ψ

∂t
= 0 .
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(iii) Hyperbolic

The equation is hyperbolic if b2 > ac. An example is the wave equation

∂2ψ

∂x2
− 1

v2

∂2ψ

∂t2
= 0 .

2.4 Methods of solution

2.4.1 Method for some elliptic and hyperbolic equa-

tions in 2D

Consider equations of the form

a
∂2ψ

∂x2
+ 2b

∂2ψ

∂x∂y
+ c

∂2ψ

∂y2
= 0.

We look for a solution of the form

ψ(x, y) = f (x + py) ≡ f (z),

where p is a constant and z = x+ py.

Then we use the chain rule:

∂f

∂x
=

df

dz

∂z

∂x
=

df

dz
,

∂f

∂y
=

df

dz

∂z

∂y
= p

df

dz
.

We substitute these into the original PDE to get
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a
d2f

dz2
+ 2bp

d2f

dz2
+ cp2d

2f

dz2
= 0.

Hence we find

cp2 + 2bp + a = 0,

with roots p = p+, p− given by

p+ =
(
−b +

√
b2 − ac

)
/c, p− =

(
−b−

√
b2 − ac

)
/c.

These roots will be complex if b2 < ac i.e., for elliptic equations. In this case we see

that p+ = p∗−.

Let u = x+ p+y, v = x+ p−y and then, because the equation is linear we can take a

linear combination of independent solutions to be the general solution. So we find

ψ(x, y) = f (x + p+y) + g(x + p−y) = f (u) + g(v),

where f and g are arbitrary functions of a single variable. These are the analogues of

the arbitrary constants in ordinary differential equations.

There are two special cases:

(a) The wave equation
∂2ψ

∂x2
=

1

c̃2

∂2ψ

∂t2
,

with u = x− c̃t, v = x+ c̃t and solution of the form

ψ(x, t) = f (x− c̃t) + g(x + c̃t) .
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Note that here (
∂

∂x

)
t

=

(
∂

∂u

)
v

(
∂u

∂x

)
t

+

(
∂

∂v

)
u

(
∂v

∂x

)
t

=

(
∂

∂u

)
v

+

(
∂

∂v

)
u(

∂

∂t

)
x

=

(
∂

∂u

)
v

(
∂u

∂t

)
x

+

(
∂

∂v

)
u

(
∂v

∂t

)
x

= −c̃
(
∂

∂u

)
v

+ c̃

(
∂

∂v

)
u

The equation becomes, in terms of u and v:

∂2ψ

∂u∂v
= 0 ⇒ ψ(x, t) = f(u) + g(v) .

An important example of this kind of solution is

ψ(x, t) = sin [k(x− c̃t)] ,

with k an arbitrary constant. This is the equation of a wave travelling at velocity c̃.

More on this shortly.

(b) Laplace’s equation

∂2ψ

∂x2
+

∂2ψ

∂y2
= 0,

With u = x+ iy, v = x− iy. Then we can write the general form most neatly as

ψ(x, y) = f(x+ iy) + g(x− iy) ≡ f(z) + g(z∗) where z = x+ iy .

It may seem odd that the solution becomes complex when we started out with ψ

real. However, because the equation is linear with real coefficients it must be that

the real and imaginary parts of this solution separately satisfy the equation. Thus

for our purposes we can restrict our solution to
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ψ(x, y) = Real[f (z)+g(z∗)] , or ψ(x, y) = Imag[f (z)+g(z∗)] .

Some examples are:

ψ(x, y) = Real(z) = x , trivially satisfies the equation

= Real(z3) = x3 − 3xy2 ,

= Real(einz) = e−nycos (nx) , with n an integer constant

2.4.2 Separation of variables

Suppose b = 0. The general equation is now

a
∂2ψ

∂x2
+ c

∂2ψ

∂y2
+ f

∂ψ

∂x
+ g

∂ψ

∂y
+ hψ = 0.

We now try a solution of the separable form ψ(x, y) = X(x)Y (y). This will not be

the most general solution since it would not be separable in this way. However, we will

see that this is a very useful move.

We then get

aY
d2X

dx2
+ cX

d2Y

dy2
+ fY

dX

dx
+ gX

dY

dy
+ hXY = 0 .

OR, dividing by XY and rearranging slightly

1

X

[
a
d2X

dx2
+ f

dX

dx
+ hX

]
= − 1

Y

[
c
d2Y

dy2
+ g

dY

dy

]
= λ a constant .

This must be true since the LHS depends only on x and the RHS depends only on y

and hence they cannot be equal unless they are independent of both x and y.

We thus obtain two ODEs which we solve using standard methods:
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a
d2X

dx2
+ f

dX

dx
+ (h− λ)X = 0 ,

c
d2Y

dy2
+ g

dY

dy
+ λY = 0 .

This is as far as we can go without knowing the specific problem under study and its

boundary conditions.

It turns out that not necessarily all values of λ are allowed. Those that are allowed will

be determined by the boundary conditions and might be a discrete set. Examples include

the allowed frequencies of a plucked string and the values of the allowed energy levels in

an atom. They are actually examples of eigenvalues.

For each allowed value of λ we label the separable solution with λ:

ψλ(x, y) = Xλ(x)Yλ(y) .

Also, because the equations are linear, then αψλ is also a solution, with α being a

constant. We then choose the normalisation of ψλ by some convenient procedure to

make life easier. The general solution is the linear combination

ψ(x, y) =
∑
λ

αλψλ(x, y) ,

where the sum is over the allowed values of λ and the αλ are constants.

[Note: if b 6= 0 in the equation there is a ∂2ψ/∂x∂y term then a change of variables to

w = x+αy, z = x+βy will give an equation of suitable form (with b = 0) for the right

choice of constants α, β.]

2.5 Laplace’s equation

∂2φ(x, y)

∂x2
+
∂2φ(x, y)

∂y2
= 0
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Q What is the steady-state temperature distribution φ(x, y) for a region bounded by

a square whose boundary, or edges, are maintained at the temperatures shown in the

figure? Namely, three edges at φ = 0 and the fourth at φ(a, y) = T (y). These are

Dirichlet conditions. The square has edges of length a.

HIDDEN

We use separation of variables and write

φ(x, y) = X(x)Y (y) ,

Y
d2X

dx2
+ X

d2Y

dy2
= 0 ,

1

X

d2X

dx2
= − 1

Y

d2Y

dy2
= λ.

We thus have the two ODEs to solve:

d2X

dx2
− λX = 0 ,

d2Y

dy2
+ λY = 0 .

Then for

λ < 0

{
X is sinusoidal

Y is exponential
, λ > 0

{
X is exponential

Y is sinusoidal
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The choice is determined by the boundary conditions, and for this example we choose

λ > 0 and set λ = m2. The separable solution is then

Xm(x) = Aemx+Be−mx , Ym(y) = Csin(my)+Dcos(my).

We need

φ(x, 0) = φ(x, a) = 0 , =⇒ X(x)Y (0) = X(x)Y (a) = 0 , 0 ≤ x ≤ a .

Hence, we impose

Y (0) = Y (a) = 0 , =⇒

Y (y) ≡ Yn(y) = Cn sin
(nπ
a
y
)
, n = 1, 2, . . .

So we have that the allowed values of m are m = nπ/a for n = 1, 2, . . .. This in turn

determines the Xm(x) to have these values of m. Thus, the most general solution we

can write down subject to these restrictions is

φ(x, y) =

∞∑
n=1

(
An e

nπx/a + Bn e
−nπx/a

)
sin
(nπ
a
y
)
.

We can do this because the PDE is linear. [We have set Cn = 1 w.l.o.g. Also note

that these solutions are Imag(e±nπz/a), z = (x+ iy).]

We impose the boundary condition that

• φ(0, y) = 0.

This gives

An + Bn = 0 , ∀ n.
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• φ(a, y) = T (y), some given function of y.

This gives the Fourier series
∞∑
n=1

2An sinh(nπ) sin
(nπ
a
y
)

= T (y)

and hence that (multiply both sides by the orthogonal function 2sin (mπy/a)/a then

act on both sides with
∫ a

0
dy to find An):

∞∑
n=1

2An sinh(nπ)
2

a

∫ a

0

dy sin
(nπ
a
y
)

sin
(mπ
a
y
)

︸ ︷︷ ︸
δmn

=
2

a

∫ a

0

dy T (y)sin
(mπ
a
y
)

⇒ 2Am sinh(mπ) =
2

a

∫ a

0

dy T (y) sin
(mπ
a
y
)

Suppose a = 1 and T (y) = y as an example. Then we have (relabelling m→ n)

2An sinh(nπ) = 2

∫ 1

0

dy y sin (nπy) .

Doing this integral

∫ 1

0

dy y sin (py) = − d

dp

∫ 1

0

dy cos (py) = − d

dp

(
sin (p)

p

)
=

1

p2
sin (p)− 1

p
cos p .

Setting p = nπ we find

An = − cos (nπ)

nπ sinh(nπ)
=

(−1)n+1

nπ sinh(nπ)
.
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So

φ(x, y) =
∞∑
n=1

2
(−1)n+1

nπ sinh(nπ)
sinh(nπx) sin (nπy) .

This is a half-range sin series. I used a sum of 100 terms here:

1.0

0.75

0.5

0.25

0.0

0.00.0

0.25

0.25

0.5

0.5

0.75

1.0

0.75

[Note that the set of separable solutions ψn(x, y) = Xn(x)Yn(y), n = 1, 2, . . . form

a basis for an ∞-dimensional vector space of which φ(x, y) is a member given by the

linear combination of the basis vectors shown in the Fourier series.]

To solve for more complicated boundary conditions we can write the full solution by

adding or superposing the solutions to related problems that we have already solved.

E.g.,

HIDDEN
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Another example is the infinitely long strip of width a and with boundary conditions

φ = 0 on the upper and lower edges and φ→ 0 as x→ −∞. On the edge at x = a we

have φ(a, y) = T (y).

HIDDEN

The most general solution is then as before

φ(x, y) =

∞∑
n=1

(
An e

nπx/a + Bn e
−nπx/a

)
sin
(nπ
a
y
)

The condition φ→ 0 as x→ −∞ implies that Bn = 0.

On the edge at x = a we have

φ(a, y) =

∞∑
n=1

An e
nπsin

(nπ
a
y
)

= T (y) ,

and so again we have a Fourier series. This gives:
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An =
2

a
e−nπ

∫ a

0

dy T (y) sin
(nπy

a

)
.

2.6 The wave equation

∂2y

∂x2
=

1

c2

∂2y

∂t2
.

2.6.1 The infinite string

We found a solution in the form

y(x, t) = f (x + ct) + g(x− ct) .
Suppose that the function g(v) is given. Then as t varies g(x− ct) vs x looks like

HIDDEN

The shape moves right with velocity c.

Likewise, the shape described by f(u), plotted as a function of x, moves left with

velocity c as t increases.

It is sufficient to know f(x) and g(x) for all x at t = 0 to specify the solution. The

shapes are unchanged; they do not disperse but just move left and right, respectively,
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at velocity c: they are travelling waves. To find f and g it is sufficient to know the

initial conditions

y(x, 0) = y0(x) and
∂y

∂t
(x, 0) = v0(x) for all x.

Now, with u = x+ ct and v = x− ct,

∂f (u)

∂t

∣∣∣∣
t=0

=
∂u

∂t

df

du

∣∣∣∣
t=0

= c
df

du

∣∣∣∣
t=0

= c
df

dx

∣∣∣∣
t=0

.

Similarly,

∂g(v)

∂t

∣∣∣∣
t=0

= −cdg
dx

∣∣∣∣
t=0

.

The initial conditions are

(i) f(x) + g(x) = y0(x)

(ii) Using the above relations

c

(
df

dx
− dg

dx

)
t=0

= v0(x) , =⇒

f (x)− g(x) =
1

c

∫ x

dx′ v0(x′) .

Thus, solving (i) and (ii),

f(x) =
1

2
y0(x) +

1

2c

∫ x

dx′ v0(x′) ,

g(x) =
1

2
y0(x)− 1

2c

∫ x

dx′ v0(x′) .

So we have
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y(x, t) = f (x + ct) + g(x− ct)

=
1

2
[y0(x + ct) + y0(x− ct)] +

1

2c

∫ x+ct

x−ct
dx′ v0(x′) .

An example is

y0(x) = e−x
2/2 , v0(x) = x2 ,

for which

y(x, t) =
1

2
[e−(x+ct)2/2 + e−(x−ct)2/2] +

1

6c
[(x+ ct)3 − (x− ct)3] .

The important special case mentioned earlier is of sinusoidal travelling waves:

y(x, t) = Asin
[
ω(x/c+ t)

]
+Bsin

[
ω(x/c− t)

]
.

Here ω is the frequency of the wave.

It is often convenient to use complex exponential notation of the form

y(x, t) = Aeiω(x/c+t) + Beiω(x/c−t) ,

and use either the real or imaginary part of y at the end. Here A and B may be complex.

2.6.2 Guitar string (finite string, stopped at the ends)

HIDDEN
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The boundary conditions are

y(0, t) = y(L, t) = 0, for all t ,

y(x, 0) = y0(x) and
∂y

∂t
(x, 0) = v0(x) for 0 < x < L.

This will be solved by a Fourier series, and so we look for a separable solution:

y(x, t) = X(x)T (t) ,

giving

1

X

d2X

dx2
=

1

c2T

d2T

dt2
= λ .

We shall choose λ = −m2 so that we obtain sinusoidal solutions. Then

d2X

dx2
+ m2X = 0 ,

d2T

dt2
+ c2m2T = 0 ,

and we find the separable solution consistent with y(0, t) = y(L, t) = 0 to be

yn(x, t) =

[
An cos

(
mct

L

)
+ Bn sin

(
mct

L

)]
[Cncos mx + Dnsin mx] ,

and y(0, t) = 0 ⇒ Cn = 0, y(L, t) = 0 ⇒ Dnsin mL = 0, or
m = nπ/L.

yn(x, t) =

[
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

)]
sin
(nπx
L

)
,

where m = nπ/L, n = 1, 2, . . . Clearly, the solution vanishes at x = 0, L ∀ t by choice

of the “sine” solution for X(x).

The general solution is then, as before,
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y(x, t) =

∞∑
n=1

[
An cos

(
nπct

L

)
+ Bn sin

(
nπct

L

)]
sin
(nπx
L

)
.

The boundary conditions then impose two Fourier series

1.) y(x, 0) = y0(x) .

Set t = 0 to get

∞∑
n=1

Ansin
(nπx
L

)
= y0(x) ,

which gives

An =
2

L

∫ L

0

dx y0(x) sin
(nπx
L

)
.

2.)
∂y

∂t
(x, 0) = v0(x) .

We take the first differential w.r.t. t and then set t = 0. We get

∞∑
n=1

Bn

(nπc
L

)
sin
(nπx
L

)
= v0(x) ,

which gives

Bn =
2

nπc

∫ L

0

dx v0(x) sin
(nπx
L

)
.

The frequency of vibration for the separable solution labelled with n is ωn = nπc/L.

The general solution consists of a superposition of modes, or harmonics, with allowed

frequencies ωn only.

2.7 The heat or diffusion equation

The diffusion equation in 1D is

∂Θ

∂t
= κ

∂2Θ

∂x2
,
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with diffusivity κ > 0. Here Θ(x, t) is the concentration, or density, of material at time

t. We expect the total amount of material to be conserved. I.e.,

∂

∂t

∫ ∞
−∞

dx Θ(x, t) = 0 .

To show that this is true, we take the derivative through the
∫

and use the diffusion

equation:

∂

∂t

∫ ∞
−∞

dx Θ(x, t) = κ

∫ ∞
−∞

dx
∂2Θ(x, t)

∂x2

= κ

[
∂Θ(∞, t)

∂x
− ∂Θ(−∞, t)

∂x

]
.

The second step is integration by parts at fixed t (or simply integration of a derivative).

For any physical distribution we assume

∂Θ(±∞, t)
∂x

= 0 ,

i.e., there is no outward flux at x = ±∞. Hence, RHS = 0 and the material is

conserved. [This kind of manipulation is also important in quantum mechanics where

the total probability is conserved.]

2.7.1 Infinite bar

This state is not in equilibrium, since it changes with time t. Imagine an infinite 1-

dimensional bar. Parts of it are held at different temperatures. This temperature distri-

bution at an initial time forms our boundary condition. Let’s take an example: suppose

that the initial state at t = 0 is

Θ(x, 0) =

 1 x > 0

0 x < 0
.
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We look for solutions in terms of a dimensionless variable

∂Θ

∂t
= κ

∂2Θ

∂x2
⇒ dim[κ] =

L2

T

so u =
x

(4κt)1/2
is dimensionless.

Suppose solutions are of the form

Θ(x, t) = F (u) .

We have

∂Θ

∂x
= F ′(u)

∂u

∂x
= F ′(u)(4κt)−1/2 ,

∂2Θ

∂x2
= F ′′(u)(4κt)−1 ,

∂Θ

∂t
= F ′(u)

∂u

∂t
= F ′(u)

(
−u
2t

)
.

The heat/diffusion equation them becomes

κF ′′(u)(4κt)−1 = − u

2t
F ′(u) ,

or

F ′′(u)

F ′(u)
= − 2u .

This is

d

du
lnF ′(u) = −2u , =⇒

F ′(u) = Ae−u
2
.
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We thus find that

F (u) = A

∫ u

0

ds e−s
2

+ B .

We define the error function erf (u) by

erf (u) =
2

π1/2

∫ u

0

ds e−s
2
,

which satisfies

erf (±∞) = ± 1 since

∫ ∞
0

ds e−αs
2

=
1

2

√
π

α
.

Then we have the solution

Θ(x, t) = A
√
π/2 erf

(
x√
4κt

)
+B.

For small t and x > 0 (x < 0) the argument, u, approaches u = ∞ (−∞). Since

erf (±∞) = ±1, the initial boundary condition imposes that A = 1/π1/2 and B = 1/2.

The solution for t ≥ 0 as t increases then looks like

HIDDEN

2.7.2 Ink drop

Note then that, if Θ1(x, t) is a solution to the diffusion equation ie
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∂Θ1

∂t
= κ

∂2Θ1

∂x2

⇒
∂ ∂Θ1
∂x

∂t
= κ

∂ ∂
2Θ1
∂x2

∂x

then so is

Θ(x, t) =
∂Θ1(x, t)

∂x
,

and hence taking Θ1(x, t) to be the error function solution above we find the new

solution

Θ(x, t) =
∂

∂x

1√
π

∫ x/(4κt)1/2

0

ds e−s
2

=
1

(4πκt)1/2
e−x

2/4κt .

For small t, the material is concentrated in a small region around x = 0 of width

x ∼ (κt)1/2. The region of high concentration increases in size as the material spreads

out: it diffuses. The initial state is therefore a highly concentrated spot at x = 0; e.g.,

an ink drop dropped into water. In fact, this is a normal distribution and as t increases

we get

HIDDEN

2.7.3 Bar of finite length

Consider a bar that occupies 0 ≤ x ≤ L. The distribution of temperature obeys the

heat equation.
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In this example we give the boundary conditions as

HIDDEN

• at x = 0 maintain temperature at zero: Θ(0, t) = 0 t ≥ 0: a Dirichlet condition;

• at x = L apply insulating boundary condition: there is no flux of heat to x > L.

Then we have ∂Θ
∂x

(L, t) = 0, t ≥ 0: a Neumann condition;

• at t = 0 the initial distribution is given: Θ(x, 0) = g(x), 0 < x ≤ L: a Dirichlet

condition.

We now look for separable solutions Θ(x, t) = X(x)T (t). Substituting, we find

κX ′′(x)T (t) = X(x)T ′(t) ,

and so

κ
X ′′(x)

X(x)
=

T ′(t)

T (t)
= C, a constant.

At this point in general we have different choices for C. These correspond to distinct

physical situations and distinct kinds of boundary conditions. In our example it turns

out that we need C < 0. For convenience, we now set C = −κα2. We have

κ
X ′′(x)

X(x)
=

T ′(t)

T (t)
= − κα2 ,



2 PARTIAL DIFFERENTIAL EQUATIONS 78

with solutions

X(x) = A sin (αx) + B cos (αx) ,

T (t) = D exp(−κα2t) .

• The condition Θ(0, t) = 0 is satisfied by taking B = 0.

• The condition Θx(L, t) = 0 then requires X ′(L) = 0, and so

cos(αL) = 0 , =⇒ αL =
(
n + 1

2

)
π , n = 0, 1, . . . ,∞.

Note that not all values of α are allowed.

• We can set D = 1 without loss of generality.

The most general solution satisfying the boundary conditions is then the Fourier series

Θ(x, t) =
∞∑
n=0

An sin
[(
n+ 1

2

)
πx/L

]
exp

[
−κ
(
n+ 1

2

)2
π2t/L2

]
.

The initial condition now requires

Θ(x, 0) =

∞∑
n=0

An sin
[(
n + 1

2

)
πx/L

]
= g(x) , 0 ≤ x ≤ L .

The functions
{

sin
[(
n+ 1

2

)
πx/L

]
, n = 0, 1, . . .

}
are orthogonal. Therefore, multi-

plying both sides by sin
[(
m+ 1

2

)
πx/L

]
and integrating from 0 to L gives

Am =
2

L

∫ L

0

dx g(x) sin
[(
m+ 1

2

)
πx/L

]
.
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Remark on other choices for C:

The choice C > 0 (real) in the separable solution discussed in the previous example will

give solutions which grow exponentially in time and is thus unphysical. However, we can

choose C = iω. This leads to complex separable solutions whose real and imaginary

parts are then taken as the solutions for Θ(x, t). These are:

Θ(x, t) = e−kx cos (ωt− kx) ,

Θ(x, t) = e−kx sin (ωt− kx) ,

Θ(x, t) = ekx cos (ωt + kx) ,

Θ(x, t) = ekx sin (ωt + kx) ,

where k is an arbitrary constant and ω = 2k2κ. One can verify this by substitution.

Note that they represent damped travelling waves, the first two travelling in the positive

x-direction, and the second two in the negative x-direction.

A physical application is to the temperature distribution interior to a bar subject to an

oscillating heat source, of frequency ω, applied to one end. This is a simple model for

the temperature in the interior of the earth subject to the daily cycle of radiation from

the sun on its surface, for example.


