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6 Taylor Series

You are probably already familiar with infinite series. Power series (and the

Taylor series we will be studying) are a special type of infinite series where each

term is proportional to a power of a variable x.

• They can be used to approximate values of a function f(x) near a point

x = a (say) using the derivatives of the function at that point, that is,

f ¨(a), f ¨¨(a), f ¨¨¨(a) etc.

• Power series can also be used to approximate functions themselves or, more

usually, solutions to di↵erential equations. Their advantage in solving such

equations issues from the ease with which power series can be di↵erentiated

and integrated, since term by term they are simply powers xn.

• Power series are also ubiquitous throughout numerical analysis. Every time

you press a function button on a calculator (e.g. to find sin(⇡/5)), you are

usually summing up a rapidly convergent power series. The series is truncated

after a few terms when the result has su�cient accuracy.

6.1 Approximating a function

We want to approximate a function f(x) near a point x = a using its derivatives

at that point.

A very crude estimate for f evaluated at a point near to x = a can be obtained

by a linear approximation:

f(a + h) ⌅ f(a) + hf
¨(a) , (234)

where h is the distance to the nearby point. This follows by first noting that

tan ✓ = f ¨(a), and then by simple trigonometry (see figure).
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Figure 42: First approximation to f(a + h) given f(a) and f ¨(a).
Of course, the smaller h is, then the better the approximation. But let’s keep

h fixed and try and improve the approximation.

We can rewrite (234) in a slightly di↵erent way as

f(x) ⌅ f(a) + (x � a)f ¨(a) . (235)

Now we are approximating the function itself f(x) rather than its value at a

specific point.

We can do the same with f ¨(x), as
f
¨(x) ⌅ f

¨(a) + (x � a)f ¨¨(a). (236)

Now remember the Fundamental Theorem of Calculus,

E a+h

a
f
¨(x) dx = f(a + h) � f(a) . (237)
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Next substitute the approximation (236) into (237), to give

E a+h

a
f
¨(x) dx ⌅ E a+h

a
[f ¨(a) + (x � a)f ¨¨(a)] dx

= ⌫xf ¨(a) + (x � a)2
2

f
¨¨(a)�a+h

a

= hf
¨(a) + h2

2
f
¨¨(a) , (238)

and putting approximation (238) into the left of (237) then gives

f(a + h) ⌅ f(a) + hf
¨(a) + h2

2
f
¨¨(a) . (239)

Equation (239) is a second-order approximation for f(a+ h) (since it involves

h squared), and it is an improvement over the first-order approximation (234).

We can derive higher-order approximations: if we use (239) to give a second-

order approximation for f ¨(x) in the form

f
¨(x) ⌅ f

¨(a) + (x � a)f ¨¨(a) + (x � a)2
2

f
¨¨¨(a) , (240)

and putting (240) into the left of (237) then gives

E a+h

a
f
¨(x) dx ⌅ E a+h

a
�f ¨(a) + (x � a)f ¨¨(a) + (x � a)2

2
f
¨¨¨(a)⌧ dx

= hf
¨(a) + h2

2
f
¨¨(a) + h3

6
f
¨¨¨(a) . (241)

Now putting approximation (241) into (237) gives

f(a + h) ⌅ f(a) + hf
¨(a) + h2

2
f
¨¨(a) + h3

6
f
¨¨¨(a) . (242)

Equation (242) is a third-order approximation for f(a + h) (since it involves

h to the third power) and it is, in turn, an improvement over the second-order

approximation (239).
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We can carry on doing this for as many times as f(x) is di↵erentiable at x = a,

and find that the nth order approximation is

f(a + h) ⌅ f(a) + hf ¨(a) + h2

2
f ¨¨(a) + h3

6
f ¨¨¨(a) + h4

24
f (4)(a)

+ h5

120
f (5)(a) + � � � + hn�1

(n�1)!f (n�1)(a) + hn

n!
f (n)(a) . (243)

6.2 Taylor’s theorem

Equation (243) is an approximate result but (hopefully) the error involved gets

smaller as more and more term are included.

This is in fact guaranteed by Taylor’s Theorem. We state the exact result

f(a + h) = f(a) + hf
¨(a) + h2

2
f
¨¨(a) + h3

6
f
¨¨¨(a) + h4

24
f
(4)(a)

+
h5

120
f
(5)(a) + � � � +

hn

n!
f
(n)(a) +Rn+1 , (244)

where Rn+1 is the remainder term, which is unknown. Taylor’s Theorem states

that, provided f can be di↵erentiated n+1 times, there exists some point x = ⇣

which lies in the range a < ⇣ < a + h such that

Rn+1 =
hn+1

(n + 1)!f (n+1)(⇣) . (245)

What this means is that the error in approximating f(a + h) by the nth order

approximation (243) is Rn+1, and that the size of this error is proportional to

hn+1.

Equation (244) is a Taylor expansion about the point a. It is often written in

the alternative, but completely equivalent, way as

f(x) = f(a) + (x � a)f ¨(a) + (x�a)2
2

f ¨¨(a) + (x�a)3
6

f ¨¨¨(a)
+(x�a)4

24
f (4)(a) + (x�a)5

120
f (5)(a) + .... + (x�a)n

n!
f (n)(a) +Rn+1

(246)

Here we are rewriting the function itself as a sum, rather than its value at a

specific point. This sum (minus the remainder) is called a Taylor polynomial.

As an example, let’s derive an approximation for e1/2, an actual number.
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Write f(x) = exp(x), a = 0 and h = 1/2. First note
f
¨(0) = f

¨¨(0) = f
¨¨¨(0) = .... = f

(n)(0) = e
0 = 1 . (247)

Plugging all this into (244) gives

exp(1/2) = 1+
1

2
+
1

2
⌅1
2
⌦2+ 1

6
⌅1
2
⌦3+ 1

24
⌅1
2
⌦4+ ...+

1

n!
⌅1
2
⌦n+Rn+1 , (248)

where the remainder is now

Rn+1 =
1(n + 1)! ⌅12⌦

n+1

exp(⇣) (249)

for some 0 < ⇣ < 1/2.
Though we don’t know what ⇣ actually, we can still estimate the worst case

error. So for instance, if we wish to estimate exp(1/2) with a relative error of

no more than 10
�6, how high does n have to be? The relative error (the ratio

of the error to the exact result) associated with the nth order approximation is

Rn+1

exp(1/2) = 1(n + 1)! ⌅12⌦
n+1

exp(⇣)
exp(1/2) . (250)

Since 0 < ⇣ < 1/2, the biggest possible value of exp(⇣) is exp(1/2), so from

(250) the relative error is at worst

1(n + 1)! ⌅12⌦
n+1

. (251)

Experimenting with a calculator shows that this maximum relative error is 1.55✓
10

�6 for n = 6, and 9.69 ✓ 10
�8 for n = 7, so that to get a relative error of no

more that 10�6 we require the seventh order approximation, n = 7.
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Example 6.1 Find the nth order Taylor sum for exp x about x = a.

So we set f(x) = ex, and note that f (r)(x) = ex for all positive integers r.

Thus f (r)(a) = ea. We next apply the formula:

f(x) = e
a + (x � a)ea + 1

2
e
a(x � a)2 + � � � +

1

n!
e
a(x � a)n +Rn+1,

where the remainder term is given by

Rn+1 =
(x � a)n+1(n + 1)! f

(n+1)(⇣) = (x � a)n+1(n + 1)! e
⇣
,

and ⇣ is some number between a and x. Note that if x is much larger than

a then the remainder might also be inconveniently big, unless of course n, the

number of terms, is also su�ciently large.

6.3 Taylor series

If a function f(x) is infinitely di↵erentiable, and its remainder Rn+1 goes to

zero as n � ô, then we can continue adding successive terms to our Taylor

polynomial forever. Ultimately we can represent f(x) exactly as an infinite

series, with the remainder term Rn+1 dropped.

This is called a Taylor series. The Taylor series of f(x) about x = a is

f(x) = f(a) + (x � a)f ¨(a) + (x�a)2
2!

f ¨¨(a) + (x�a)3
3!

f ¨¨¨(a) + ...

+(x�a)n
n!

f (n)(a) + ... .

The special case of the Taylor series about x = 0 is called a Maclaurin series:

f(x) = f(0) + xf ¨(0) + x2

2!
f ¨¨(0) + x3

3!
f ¨¨¨(0) + ... + xn

n!
f (n)(0) + ... . (252)
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Finally, we formally define the term power series. It refers to an infinite series

where each term is proportional to a power of a variable x:

ô

=
n=0

bn x
n = b0 + b1x + b2x

2 + b3x
3 + ..., (253)

for some coe�cients bn. If a power series converges it is then necessarily the

Taylor series of some function (cf. Borel’s Theorem). Consequently, we will use

the terminology power and Taylor series interchangeably.

6.4 Taylor series of the exponential function and its

relatives

As a simple example, consider the power series expansion of exp x about x = 0.

All the derivatives of exp(x) are equal to 1 at x = 0. Equation (252) then gives

us

exp(x) = 1 + x +
x2

2!
+

x3

3!
+ ..... +

xn

n!
+ .... =

ô

=
n=0

xn

n!
. (254)

By replacing x by �x in (254) we find that

exp(�x) = 1 � x +
x2

2!
�

x3

3!
+ ..... +

(�1)nxn
n!

+ .... =
ô

=
n=0

(�1)nxn
n!

, (255)

and so

coshx = 1

2
⇧1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ .... + ⌫1 � x +

x2

2!
�

x3

3!
+

x4

4!
� .....�↵ .

(256)

The terms in even powers of x add together, but the odd terms cancel:

cosh(x) = 1 +
x2

2!
+

x4

4!
+

x6

6!
.... +

x2n(2n)! + .... =
ô

=
n=0

x2n(2n)! . (257)
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Notice here how the general term is an even power of x.

In the same way, we can find the power series expansion for sinh x:

sinhx = 1

2
⇧1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ .... � ⌫1 � x +

x2

2!
�

x3

3!
+

x4

4!
� .....�↵ .

(258)

The terms in odd powers of x now add together, while the even terms cancel:

sinh(x) = x +
x3

3!
+

x5

5!
+

x7

7!
.... +

x2n+1(2n + 1)! + .... =
ô

=
n=0

x2n+1(2n + 1)! . (259)

Notice here how the general term is an odd power of x.

Example 6.2 Find the first three nonzero terms in the power series for tanh x

about x = 0.

Set f(x) = tanh x, and note that f(0) = 0. We next work out its derivatives

evaluated at x = 0:

f
¨(x) = sech

2
x,

f
¨¨(x) = d(cosh x)�2

dx
= �2 sinh x(cosh x)�3,

f
¨¨¨(x) = �2 coshx(cosh x)�3 + 6 sinh

2
x(cosh x)�4,

f
(4)(x) = 4 sinh x(cosh x)�3 + 12 sinh x(cosh x)�3 � 24 sinh

3
x(cosh x)�5,

f
(5)(x) = �48 sinh2 x(cosh x)�4 + 16(cosh x)�2

� 72 sinh
2
x(cosh x)�4 + 120 sinh

4
x(cosh x)�4,

with

f
¨(0) = 1, f

¨¨(0) = 0, , f
¨¨¨(0) = �2, f

(4)(0) = 0, f
(5)(0) = 16.
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If one still has one’s sanity, we can then apply the formula to get the first three

terms:

tanh x = x +
1

3!
(�2)x3 + 1

5!
(16)x5 + . . . ,

= x �
x3

3
+

2x5

15
� . . . .

6.5 Power series of trigonometric functions

Consider f(x) = sin x. Note that

d sinx
dx

= cos x = sin ⇥x + ⇡
2
�

d2 sinx
dx2 = � sin x = sin (x + ⇡)

d3 sinx
dx3 = � cos x = sin ⇥x + 3⇡

2
�

d4 sinx
dx4 = sin x = sin (x + 2⇡)
⌃ = ⌃ = ⌃

which leads us to the useful general result

d
n
sin x
dxn

= sin ⇤x +
n⇡
2
 . (260)

Therefore

f(0) = sin(0) = 0 f ¨(0) = sin(⇡/2) = 1 f ¨¨(0) = sin(⇡) = 0

f ¨¨¨(0) = sin(3⇡/2) = �1 f (4)(0) = sin(2⇡) = 0.... .

Putting these results together:

sin x = x �
x3

3!
+

x5

5!
..... +

(�1)nx2n+1(2n + 1)! + .... =
ô

=
n=0

(�1)nx2n+1(2n + 1)! . (261)
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In the same way we can find a power series for f(x) = cos x. Note that

d cosx
dx

= � sin x = cos ⇥x + ⇡
2
�

d2 cosx
dx2 = � cos x = cos (x + ⇡)

d3 cosx
dx3 = sin x = cos ⇥x + 3⇡

2
�

d4 cosx
dx4 = cos x = cos (x + 2⇡)
⌃ = ⌃ = ⌃

which leads us to another useful general result

d
n
cos x
dxn

= cos ⇤x +
n⇡
2
 . (262)

Therefore

f(0) = cos(0) = 1 f ¨(0) = cos(⇡/2) = 0 f ¨¨(0) = cos(⇡) = �1
f ¨¨¨(0) = cos(3⇡/2) = 0 f (4)(0) = cos(2⇡) = 1

(263)

Putting these results together

cos x = 1 �
x2

2!
+

x4

4!
..... +

(�1)nx2n(2n)! + .... =
ô

=
n=0

(�1)nx2n(2n)! (264)

Example 6.3 Find the power series for sin x about x = a.

Once again we set f(x) = sin x, and note that the formula for the power series

around x = a is f(x) = <n(f (n)(a)/n!)(x � a)n. From earlier

f
(n)(a) = dn sin x

dxn
ªªªªªªªªx=a = sin ⇤a + n⇡

2
 .

Therefore:

sin x =
ô

=
n=0

sin ⇥a + n⇡
2
�

n!
(x � a)n,

= sin a + cos a (x � a) � sin a
2

(x � a)2 � cos a
3!

(x � a)3 + sin a
4!

(x � a)4 + . . .
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An alternative way to this result is the following. Set z = x � a. Then

sin x = sin(z + a) = sin z cos a + cos z sin a.

Next we expand sin z and cos z around z = 0 using the canonical formulas (261)

and (264), and reorganise the terms.

6.6 Euler’s formula revisited

In Section 2.3 we made considerable use of the unproven result

exp(i✓) = cos ✓ + i sin ✓ . (265)

Now we can prove it. First note from (254) that

exp(i✓) = 1 + i✓ +
(i✓)2
2!

+
(i✓)3
3!

+
(i✓)4
4!

+
(i✓)5
5!

+
(i✓)6
6!

+ .....

= 1 + i✓ �
✓2

2!
�

i✓3

3!
+

✓4

4!
+

i✓5

5!
�

✓6

6!
+ ....

= 1 �
✓2

2!
+

✓4

4!
�

✓6

6!
+ .... + i ⌫✓ � ✓3

3!
+

✓5

5!
� ...� , (266)

which we now compare with the power series for cos ✓ (equation 264) and the

power series for sin ✓ (equation 261).

It is clear that the real part of the right hand side of (266) is cos ✓ and the

imaginary part is sin ✓, thereby proving (265).

6.7 Power series for logarithms

We can’t derive a power series for lnx about x = 0, because ln0 is undefined

(so the first term in (252) is undefined).
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However, we can find a power series for ln(1 + x) about x = 0. Writing

f(x) = ln(1 + x) we see that f(0) = ln1 = 0, while

f ¨(x) = 1
1+x f ¨¨(x) = � 1(1+x)2 f ¨¨¨(x) = 2(1+x)3

f (4)(x) = � 6(1+x)4 f (5)(x) = 24(1+x)5 f (n)(x) = (�1)n�1 (n�1)!(1+x)n .

It follows that the r’th term in the power series is

f (n)(0)
n!

x
n = (�1)n�1(n � 1)!

n!
x
n = (�1)n�1

n x
n
. (267)

The power series for ln(1 + x) about x = 0 is therefore

ln(1 + x) = x �
x2

2
+

x3

3
�

x4

4
+

x5

5
+ ........(�1)n�1xnn + .... . (268)

By replacing x by �x we can also find the power series for ln(1 � x) about

x = 0,

ln(1 � x) = � ⌫x +
x2

2
+

x3

3
+

x4

4
+

x5

5
+ ... +

xn

n + .... .� (269)

The power series for sin x, cos x, exp x etc are valid for any real value of x.

However, the power series for ln(1 ± x) have a limited range of validity: the

power series for ln(1 + x) is valid on the real axis for �1 < x ( 1, and the

power series for ln(1 � x) is valid on the real axis for �1 ( x < 1.

6.8 The binomial expansion

We now consider the function

f(x) = (1 + x)↵ ,

where ↵ is a real number (not necessarily an integer).
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By successive di↵erentiation we find

f ¨(x) = ↵(1 + x)↵�1
f ¨¨(x) = ↵(↵ � 1)(1 + x)↵�2
f ¨¨¨(x) = ↵(↵ � 1)(↵ � 2)(1 + x)↵�3
f (4)(x) = ↵(↵ � 1)(↵ � 2)(↵ � 3)(1 + x)↵�4

⌃ = ⌃
f (n)(x) = ↵(↵ � 1)(↵ � 2)(↵ � 3)...(↵ � n + 1)(1 + x)↵�n .

(270)

We can use this information to find the power series of (1 + x)↵ about x = 0:

(1 + x)↵ = 1 + ↵x + ↵(↵�1)
2!

x2 + ↵(↵�1)(↵�2)
3!

x3

+ . . . ↵(↵�1)(↵�2)(↵�3)...(↵�n+1)
n!

xn + ....
(271)

The power series (271) is valid in the range �1 < x < 1 for general ↵.

In the special case when ↵ is a positive integer, say ↵ = N , then the power

series stops after a finite number of terms. Specifically, the coe�cient of xN+1

is

↵(↵ � 1)(↵ � 2)(↵ � 3)...(↵ �N + 1)(↵ �N)(N + 1)! x
N+1

, (272)

but since ↵ = N the final factor in (272) is precisely zero. Hence the term for

xN+1 vanishes, as do the terms for any higher powers of x, since all such higher

terms also contain the factor ↵ �N .

When ↵ = N the power series (271) reduces to the polynomial:

(1 + x)N = 1 +Nx +
N(N � 1)

2!
x
2 +

N(N � 1)(N � 2)
3!

x
3 + .....

+
N(N � 1)(N � 2)(N � 3)...(1)

N !
x
N
. (273)

The general term in this sum is

N(N � 1)(N � 2)...(N � r + 1)
r!

x
r
,
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which we can rearrange to be

N !(N � r)!r!xr , (274)

or in other words the usual binomial coe�cient. So when ↵ is a positive integer

(271) agrees with the familiar binomial expansion you have seen before:

(1 + x)N =
N

=
r=0

⇧N
r
↵xr .

Finally, you will often encounter the alternative notations

N !(N � r)!r! � N
Cr � C

N
r � NCr . (275)

Example 6.4 Find the power series expansion about x = 0 of (2 + x)�1/2.
We re-express the function so it is easier to apply the binomial expansion:

(2 + x)�1/2 = 2
�1/2 ⇤1 + x

2
 �1/2 .

We see that ↵ = �1/2 and so we have:

(2 + x)�1/2 = 2
�1/2 �1 � 1

2
⇤x
2
 + 1

2!
�
�1
2

�
�3
2

� ⇤x
2
 2

+
1

3!
�
�1
2

�
�3
2

�
�5
2

� ⇤x
2
 3 + . . . ⌧ ,

= 2
�1/2 ⌫1 � x

4
+

3x2

32
�

5x3

128
+ . . . �

6.9 The Newton-Raphson method

We finish by outlining a method to approximately solve nonlinear algebraic equa-

tions such as f(x) = 0, where f is a nonlinear function.



6 TAYLOR SERIES 139

• Suppose we have a rough guess for what the solution is, x0, so that f(x0) ⌅ 0.

But we want to improve its accuracy. In other words, generate a new better

approximation to the solution (call it x1).

• We write x1 = x0 + h. We want to find h.

• So we set f(x1) = f(x0 + h) = 0 and then Taylor expand f around x0

truncating at first order

0 = f(x0 + h) ⌅ f(x0) + hf
¨(x0)

• We solve this approximate equation to get h and hence x1, our better ap-

proximation:

x1 = x0 �
f(x0)
f ¨(x0) (276)

• We can then repeat the procedure to get x2, an even better approximation.

And we continue this till we converge on to the exact solution (within some

specified accuracy)

Example: find the solution to f(x) = x2 � ln(x + 5) = 0.

Take as our initial guess x0 = 2. Using a calculator, this yields f(x0) = 2.0541,

which is not very good. Let us see if the Newton-Raphson method can get us

a better approximation:

i xi f(xi) h

0 2.0 2.0541 -0.53254

1 1.4675 0.28665 -0.10310

2 1.3644 0.010758 -0.0041835

3 1.3602 1.7718 ✓ 10
�5 �6.9125 ✓ 10

�6
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Figure 43: Successive approximations using the Newton-Raphson method.

The Newton-Raphson method has a graphical interpretation, because solving

f(x) = 0 is the same as finding the x-intercept of the curve y = f(x).
Convergence of Newton-Raphson is very rapid when x0 is near the solution. But

if f has a turning point between x0 and the exact solution then there is the

danger that the method fails.
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Figure 44: Example of when the Newton-Raphson may fail.

Example 6.5 [2004, paper 2, question 8D; 2006, paper 1, questions 9E]

(a) Find, by any method, the first three non-zero terms in the Taylor expansion

about x = 0 of the following functions.

log(1 + x)
1 � x

1

1 + sin x
log(cos x).

(b) Let

f(x) = ô

=
i=0

aix
i

and g(x) = ô

=
i=0

bix
i

and let<ô
i=0 cix

i be the Taylor expansion about x = 0 of the function f(x)g(x).
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1. Find c0, c1 and c2 in terms of a0, a1, a2, b0, b1 and b2.

2. Give a general expression for ci as a finite sum of products of the coe�cients

aj and bj.

(c) Find the first four terms in the Taylor expansion around x = 1 of tan�1 x

In (a) rather than work out all the complicated derivatives of these functions,

let us write down the Taylor series of the component functions.

For the first one, recall

ln(1 + x) = x � 1
2
x
2 + 1

3
x
3 � 1

4
x
4 + 1

5
x
5 � . . .

and that
1

1 � x
= 1 + x + x

2 + x
3 + . . . ,

the infinite geometric series with ratio x (or the binomial expansion with ↵ =
�1). In both expansions we are assuming that x is su�ciently small so that the

series converge. Combining these two:

ln(1 + x)
1 � x

= (x � 1
2
x
2 + 1

3
x
3 � 1

4
x
4 + . . . )(1 + x + x

2 + x
3 + . . . ),

= x + x
2(1 � 1

2
) + x

3(1
3
� 1

2
+ 1) + . . . ,

= x � 1
2
x
2 + 5

6
x
3 + . . . .

For the second one, introduce a new variable y = sin x. If we are to expand

around x = 0 then we expand around y = 0. Now

1

1 + sin x
= 1

1 + y
= 1 � y + y

2 � y
3 + . . . ,

the last equality coming about using either the binomial expansion with ↵ = �1
or recognising the infinite geometric series with ratio �y. (This series converges
for all x except those values for which sin x = ±1.) We next insert the Taylor
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series for sin x = x � x3/3! + x5/5! � . . . and regroup the terms:

1

1 + sin x
= 1 � sin x + (sin x)2 � (sin x)3 + . . .

= 1 � (x � x
3/3! + x

5/5! � . . . ) + (x � x
3/3! + x

5/5! � . . . )2 � . . .

= 1 � x + x
2 + . . .

Finally, for the third one, we play a similar trick and set cos x = 1+ z, with the

new variable z. Note that expanding around x = 0 means expanding around

z = 0. First we have

ln(cos x) = ln(1 + z) = z � 1
2
z
2 + 1

3
z
3 � . . . .

(This converges for su�ciently small z, hence su�ciently small x.) We next

insert the Taylor series for cos x = 1� x2/2!+ x4/4!� x6/6!+ . . . , recognising

that z = �x2/2! + x4/4! � x6/6! + . . . :

ln(cos x) = (�x2/2! + x
4/4! � x

6/6! + . . . ) � 1

2
(�x2/2! + x

4/4! � x
6/6! + . . . )2

+
1

3
(�x2/2! + x

4/4! � x
6/6! + . . . )3 + . . . ,

= �x2/2 + x
4/24 � x

6/720 � 1

2
(x4/4 � x

6/24 + . . . )
+

1

3
(�x6/8 + . . . ) + . . . ,

= �
x2

2
�

x4

12
�

x6

45
.

In part (b) we have a bonanza of terms to multiply . . . .

f(x)g(x) = (a0 + a1x + a2x
2 + . . . )(b0 + b1x + b2x

2 + . . . ),
= a0b0 + (a1b0 + a0b1)x + (a2b0 + a1b1 + a0b2)x2 + . . .

= c0 + c1x + c2x
2 + . . . ,

with c0 = a0b0, c1 = a1b0 + a0b1), and c2 = a2b0 + a1b1 + a0b2.
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We realise that the term proportional to xl consists of a sum of all the products

aibjx
i+j so that i + j = l. So we can write down the formula:

cl =
l

=
i=0

aibl�i.

Question (c) is a more straightforward one. Set f(x) = tan
�1 x. Then f(1) =

⇡/4. And we have

f
¨(x) = 1

1 + x2
,

f
¨¨(x) = �2x(1 + x2)2 ,

f
¨¨¨(x) = �2(1 + x2)2 � (�2x)[4x(1 + x2)](1 + x2)4 = 2(3x2 � 1)(1 + x2)3 .

Then f ¨(1) = 1/2, f ¨¨(1) = �1/2, and f ¨¨¨(1) = 1/2, and finally:

tan
�1

x = ⇡
4
+

x � 1

2
�

(x � 1)2
4

+
(x � 1)3

12
+ . . . .
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7 Elementary Probability

Probability theory is essential in every field of science, even if it is not always

used explicitly. It supplies a precise set of rules for exercising logic when we have

incomplete information.

• Experiments and observations always involve random error (and usually a

systematic error as well!), and so comparison with theory is inevitably prob-

abilistic. Theory can only ever be proved up to a high level of significance.

• Some physical systems are inherently probabilistic, most notably in quan-

tum mechanics, where we only ever compute probabilities because of the

‘unknowable’ nature of the subatomic world.

• Other systems, though formally deterministic, are so impossibly complicated

that only a probabilistic or statistical description is feasible. Examples include:

chaotic dynamical systems, fluid turbulence, the kinetic theories of gases and

of reaction rates in chemistry.

• Probability theory has many other applications: the social sciences; clinical

trials, epidemiology, and public health; insurance; risk assessment in share

trading and commodity markets; determining reliability in consumer products,

such as cars and computers; etc.

• It is also useful when playing cards and other games of chance, which is why

it was originally developed: in 1654, a dispute about a popular game of dice,

between Pascal and Fermat, initiated the modern study of probability, and

Abraham de Moivre’s book on gaming in 1711 laid down its foundations.

Probability theory and statistics di↵er in the sense that probability deals with

the likelihood of future events (given that we understand the underlying process

creating them), while statistics takes as its task the analysis of previous events,

in order to determine the underlying process giving rise to these events.
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7.1 Basic concepts

7.1.1 Random experiments

We will be concerned with the outcomes of random experiments, that is,

trials or observations which can be repeated many times but which contain an

element of chance.

• Outcomes: The possible results of the experiments are called the outcomes.

The outcomes must be mutually exclusive and we can label them (say)

!1, !2, ... etc.

For example, when throwing a six-sided die the outcomes are just the numbers

from one to six, !1 = 1, !2 = 2, ..., !6 = 6.

If the outcomes are described as “fair” or “unbiased” then they are equally

likely.

• Sample space: The set of all possible outcomes of the experiment is called

the sample space, S = {!1, !2, ...}.
For the example of the die, S = {1, 2, 3, 4, 5, 6}.

• Events: An event A is a subset of the sample space S (so that A L S). An

event may contain more than one outcome.

For example, the event A might be ‘throw an even number with the die’,

with A = {2, 4, 6}.
7.1.2 Elementary set theory

We are often concerned about whether or not two or more di↵erent events can

happen together (simultaneously or consecutively) — and thus must deal with

the relationship of two or more sets.

For the two events A and B we define the following sets:
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1. A =B: the intersection of A and B, i.e. both events A and B occur;

2. A < B: the union of A and B, i.e. either event A, or event B, or both,

occur.

3. A: the complement of A, i.e. A does not occur. Other notations for the

complement include Ac and A¨.

4. A �B: outcomes in A which are not in B. Note that

A �B = A =B . (277)

A good way to represent these sets is via Venn diagrams.

A B A B

A A0

Figure 45: Panel 1 is A <B; panel 2 is A =B; lower panel is A

The empty set, denoted o, contains no outcomes. Note that

A = A = o, A < A = S . (278)

The events A and B are said to be mutually exclusive if they cannot both

occur, i.e.

A =B = o . (279)
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7.1.3 Probability

The probability P (A) expresses how likely an event A is.

Suppose we repeat our experiment a very large number N times, and find that

the event A occurs NA times. Then we define

P (A) = lim
N�ô

NA

N
. (280)

The basic properties of probability are:

1. It is restricted between 0 and 1, i.e.

0 ( P (A) ( 1 , (281)

with P (S) = 1 while P (o) = 0.

2. If P (A) = 0 then the event A is impossible.

3. For the complement of the event A we have

P (A) = 1 � P (A) , (282)

which is especially useful when P (A) is easier to find than P (A).
4. Additive rule for mutually exclusive outcomes. Recall that the individual

outcomes !1, !2, ... are mutually exclusive. So, if event Ai = {!i} for all i,

and A = �iAi is an event comprising some number of outcomes, then

P (A) = =
i

P (Ai) (283)

5. For the union of two general events A and B (that are not necessarily mu-

tually exclusive) we have

P (A <B) = P (A) + P (B) � P (A =B) . (284)
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This result is easiest to see by drawing a Venn diagram - note that the term

P (A=B) is taken o↵ the right of (284) to avoid double counting the region

A =B.

If A and B are mutually exclusive then P (A =B) = 0 and

P (A <B) = P (A) + P (B) , (285)

just as in point 4.

The result (284) can be extended to three events to give

P (A <B < C) = P (A) + P (B) + P (C)
� P (A =B) � P (B = C) � P (C = A)
+ P (A =B = C) . (286)

This is best seen in a Venn diagram.

Figure 46: Venn diagram for P (A <B < C).
Example 7.1 A twelve-sided die is thrown. Event A is ‘the number thrown is

even’, event B is the number thrown is ‘divisible by three’, and event C is ‘the

number thrown is one of 6, 7, 8, 9’. Find the probabilities of A = B, C = B,

C = A, A �B, A =B = C and A <B < C.
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Let us first describe, in mathematical terms, the various events. We have:

A = {2, 4 , 6, 8, 10, 12}, B = {3, 6, 9, 12}, C = {6, 7, 8, 9}.
And since we know there are 12 equally possible outcomes in a throw, we can

write down:

P (A) = 6

12
= 1

2
, P (B) = 1

3
, P (C) = 1

3
.

Consider now the event defined by the intersection of A and B. Obviously

A=B = {6, 12}. And thus its probability is P (A=B) = 2/12 = 1/6. Similarly

C =B = {6, 9} and P (C =B) = 1/6.
Now A � B consists of all the outcomes in A that are not shared by B. Thus

A �B = {2, 4, 8, 10}. And hence P (A �B) = 1/3.
The intersection of A, B, and C consists of only one outcome: A=B=C = {6}.
Thus P (A=B = C) = 1/12. On the other hand the union of the three sets is

A <B < C = {2, 3, 4, 6, 7, 8, 9, 10, 12}
and comprises 9 outcomes. Hence P (A <B < C) = 9/12 = 3/4.
Finally, recognising that P (D) = 1 � P (D) for any event D, we can write

P (A <B < C) = 1 � P (A < B < C) = 1 � 3/4 = 1/4. This can be checked

directly by noting that A <B < C = {1, 5, 11}, thus comprising 3 events. Its

probability is then 3/12 = 1/4, in agreement with the other approach.

Example 7.2 A card is drawn at random from a pack. Event A is ‘the card is

an ace’, event B is ‘the card is a spade (π)’, event C is ‘the card is one of ace,

king, queen, jack, 10’. Calculate the probability that the card has (i) at least

one of these properties; (ii) all of these properties.

So we can write

A = {ace of ∏, ace of ∂, ace of ∫, ace of π}
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and note that there are 4 outcomes, while there are 52 cards in the pack. Hence

P (A) = 4/52 = 1/13.
Event B consists of all the spades, of which there are 13 cards (2-10, plus the

3 royals, plus the ace). Therefore P (B) = 13/52 = 1/4.
Event C consists of 20 cards/outcomes, because each of the fours suits contains

an ace, king, queen, jack, and 10. Thus P (C) = 20/52 = 5/13.
Part (i) asks us to find the probability of the union of these three events:

P (A < B < C). It is actually a tad easier to find P (A <B < C) first. The

event A <B < C consists of (a) no spades and (b) only the cards 2 � 9 in

the three suits of ∏, ∂, and ∫. This gives us 8 ✓ 3 = 24 cards. Thus

P (A <B < C) = 24/52 = 6/13. Now we can answer the question:

P (A <B < C) = 1 � P (A <B < C) = 1 �
6

13
= 7

13
.

Part (ii) asks us to find the intersection of these sets A, B, and C. We see

straightaway that A =B = C = {ace of π}. Thus P (A =B = C) = 1/52.
Example 7.3 A biased die has probability p, 2p, 3p, 4p, 5p, 6p of throwing 1, 2,

3, 4, 5, 6 respectively. Find p. What is the probability of throwing an even

number?

If S is the sample space, the total probability must be 1, i.e. P (S) = 1, or

written out in full:
6

=
n=1

P ({n}) = 1.

But each number rolled doesn’t have an equal probability! Thus this can be

rewritten
6

=
n=1

np = p + 2p + 3p + 4p + 5p + 6p = 1.

We can solve this equation for p, and find that p = 1/21.



7 ELEMENTARY PROBABILITY 152

Let us denote by A the event that we roll an even number, and so A = {2, 4, 6}.
We can then work out its probability directly by looking at each of the outcomes

that it consists of:

P (A) = P ({2}) + P ({4}) + P ({6}) = 2p + 4p + 6p = 12p = 4

7
.

7.2 Conditional probability

We are often interested in determining the probability of one event given that

another, possibly related, event has occurred.

The probability that event A occurs, given that event B has occurred, is denoted

P (A∂B) and is called the conditional probability.

For example, event A might correspond to a student getting a first, while B

corresponds to a student attending every lecture. P (A∂B) is the probability

that a student gets a first given that they attended every lecture. P (A∂B) is

presumably di↵erent to P (A), the unconditional probability that a student gets

a first.

Because the event B is known to have occurred, then the event B replaces S as

the sample space when we try to compute the event B∂A. This then motivates

P (A∂B) = P (A =B)
P (B) , (287)

where we have had to normalise the probability of the intersection by P (B).
• If two events A and B are mutually exclusive then we have P (A∂B) =

P (B∂A) = 0,

e.g. if one card is drawn from a pack, and event A is that a red card is drawn

while event B is that a club (∫) card is drawn, then B and A are mutually

exclusive.
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• We say two events A and B are independent if P (A∂B) = P (A),
e.g. event B is tossing a coin and getting heads; event A is tossing the coin

a second time and getting tails.

• Be careful, usually P (A∂B) j P (B∂A).
As an example, we will find the probability that the single throw of a fair die

results in a number less than four, given that the throw resulted in an odd

number. Let B be the event of the throw being less than four, i.e. B = {1, 2, 3},
then it follows that

P (B) = 3

6
= 1

2
. (288)

Let A be the event that the throw of the die is an odd number, i.e. A = {1, 3, 5},
then P (A) = 1/2 as well.

The event B =A is a throw which is less than 4 and odd, i.e. B =A = {1, 3},
so that

P (B = A) = 2

6
= 1

3
. (289)

It then follows from (287) that

P (B∂A) = P (A =B)
P (A) = 1/3

1/2 = 2

3
. (290)

Example 7.4 Consider drawing 2 balls out of a bag of 5 balls: 1 red, 2 green, 2

blue. What is the probability of drawing a blue ball out of the bag given that

the first ball was blue if: (i) the first ball is replaced; (ii) the first ball is not

replaced.

Part (i) is relatively easy. If the first blue ball is replaced then there are two blue

balls in a bag of five balls, and hence the probability of drawing one of blues is
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2/5. There is no ‘memory‘ of the first draw because the first ball was replaced.

And thus there is no need to use the concepts of conditional probability here.

Part (ii), however, does require us to use conditional probability, because the

first draw has impacted on subsequent draws. Let us define the following events:

event A denotes getting a blue ball in the first draw. Thus P (A) = 2/5 (there

are two blue balls out of five); event B denotes getting a blue ball in the second

draw. The question asks us to find P (B∂A).
The event that both balls drawn are blue is just B = A, and its probability is

simply P (B =A) = (2/5)✓ (1/4) = 1/10, i.e. the product of getting a blue in

the first draw (2/5) and of getting a blue in the second (1/4). The conditional

probability (which is di↵erent to the probability of the intersection!), can then

be computed

P (B∂A) = P (A =B)
P (A) = 1/10

2/5 = 1

4
.

7.2.1 Bayes’ Theorem

We now come to the most important result in conditional probability, known as

Bayes’ Theorem.

The probability of A occurring given B is P (A∂B), cf. equation (287). On

the other hand, the probability of event B occurring given that A has already

occurred is P (B∂A), with
P (B∂A) = P (B = A)

P (A) . (291)

We then have

P (A =B) = P (B∂A)P (A)
P (B = A) = P (A∂B)P (B) . (292)

Furthermore, we know that P (A=B) = P (B =A), and using (292) this leads
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to

P (A∂B) = P (A)P (B∂A)
P (B) , (293)

provided that P (B) j 0. This is Bayes’ Theorem.

An alternative form of Bayes’ Theorem can be written down by first using the

law of total probability

P (B) = P (B∂A)P (A) + P (B∂A)P (A) , (294)

which we now discuss.

This law holds because there are two di↵erent possible routes to getting event

B.

1. The first route is that event A (probability P (A)) happens and then B

happens (probability P (B∂A)). The total probability for this route is

P (A) ✓ P (B∂A) . (295)

2. The second route is that event A does not happen (probability P (A)) and
then B happens (probability P (B∂A)). The total probability for this route

is

P (A) ✓ P (B∂A) . (296)

Adding together the probabilities in (295) and (296) then gives (294).

Putting the law of total probability into (293) gives the alternative form of

Bayes’ Theorem:

P (A∂B) = P (A)P (B∂A)
P (B∂A)P (A) + P (B∂A)P (A) . (297)

This is sometimes easier to use than (293).
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We consider the following example:

A screening test is 99% e↵ective in detecting a certain disease when a person

has the disease. The test yields a ‘false positive’ for 1% of healthy persons

tested. If 0.1% of the population have the disease then what is the probability

that a person whose test is positive has the disease?

Let the event A be that a person has the disease, so that P (A) = 0.001, and

the probability that they do not have the disease is P (A) = 1�P (A) = 0.999.

Let the event B be a positive test, so that P (B∂A) = 0.99 (i.e. the probability

of the test successfully detecting the disease) and P (B∂A) = 0.01 (i.e. the

probability of a positive test on a healthy person).

From (297) we therefore have

P (A∂B) = P (A)P (B∂A)
P (B∂A)P (A) + P (B∂A)P (A)

= 0.001 ✓ 0.99
0.99 ✓ 0.001 + 0.01 ✓ 0.999

= 0.0902

or roughly 9%. So the probability of someone who tests positive actually having

the disease is rather low! This has arisen because the probability of a false

positive, 0.01, is large compared to the probability of having the disease, 0.001.

Example 7.5 Calculate the probability that someone who tests negative actually

has the disease after all, P (A∂B).
So we apply Bayes’ Theorem again so that

P (A∂B) = P (A)P (B∂A)
P (B∂A)P (A) + P (B∂A)P (A) .

To find P (B∂A) we note that P (B∂A) + P (B∂A) = 1, since if A happens
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there are only two mutually exclusive possibilities B and B. We know that

P (B∂A) = 0.99, therefore P (B∂A) = 1 � P (B∂A) = 1 � 0.99 = 0.01.

Similarly, P (B∂A) + P (B∂A) = 1, and thus P (B∂A) = 1 � P (B∂A) = 1 �
0.01 = 0.99.

Putting everything together now, we get

P (A∂B) = 0.001 ✓ 0.01
0.001 ✓ 0.01 + 0.99 ✓ 0.999

= 0.00001
0.98901

⌅ 10
�5
,

which is quite a small probability.

7.3 Combinatorics

We often worry about problems which involve completing a sequence of actions

or arranging/grouping elements, e.g. tossing a coin 10 times, drawing coloured

balls from a bag, or arranging N indistinguishable particles into R energy levels

(Bose-Einstein or Fermi-Dirac statistics).

When the order of the actions/elements matters, then we are dealing with

permutations.

When the order of the actions/elements does not matter, then we are dealing

with combinations.

7.3.1 Permutations

Consider n distinguishable objects, and let us select r of them without replace-

ment and put them in order. This is a permutation.

How many di↵erent permutations are possible?

• The first time we select an object, there are n possible choices.

• The second time there are only n � 1 choices
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• The third time there are only n � 2 choices, and on and on until we have

taken r objects.

It follows that the total number of possibilities is the product of all the choices

n(n � 1)(n � 2) . . . (n � r + 1) = n!(n � r)! � n
Pr . (298)

We have that nPn = n!, since 0! � 1.

A simple example: how many ways can all the club (∫) cards be arranged in a

line?

There are n = 13 cards to draw from. And we are going to arrange all of them,

so r = 13. Therefore the number of permutations is

13
P13 = 13! = 6, 227, 020, 800.

So quite a few.

How about the number of ways to order 4 cards from the club suite?

That would be 13P4 = 13!/9! = 17, 160.

Example 7.6 What is the probability that in a room of N people at least 2 have

the same birthday? Take N = 200.

First, let us take the number of days in the year to be 365, for simplicity. Next,

let A denote the event that two or more people have the same birthday. It will

turn out, however, to be easier to work with its complement A: the event that

everyone in the room has a di↵erent birthday. Consider the number of possible

permutations of di↵erent birthdays amongst the N people: in other words, how

many lists of N di↵erent numbers can be made out of a choice of 365? This is

equal to

365
PN = 365 ✓ 364 ✓ 363 ✓ � � � ✓ (365 �N + 1) = 365!(365 �N)! .
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On the other hand, the total number of di↵erent birthday distributions amongst

the N people (allowing repetitions) is just

365 ✓ 365 ✓ 365 ✓ � � � ✓ 365 = 365
N
.

The probability P (A) is the division of the first number by the second:

P (A) = 365!(365 �N)!365N .

Now we can compute P (A), via
P (A) = 1 � P (A) = 1 �

365!(365 �N)!365N .

As N gets large the probability rapidly approaches 1. For example, if N = 23,

then P (A) ⌅ 1/2. If N = 50, then P (A) ⌅ 0.97. Finally, when N = 200, we

get P (A) ⌅ 1 � 10
�30 ⌅ 1. In the last case it is guaranteed that at least two

people share a birthday.

7.3.2 Combinations

Let us, as before, select r objects from a set of n, but let us not care about

the ordering of the selection. (For example, how many hands of 5 cards are

there from a full deck of 52 cards?) This is a combination. How many di↵erent

combinations are there?

• So there are still nPr ordered arrangements, as before, but we do not care

about the ordering.

• Each group of r objects can be ordered r! ways, but we do not want to count

all of these di↵erent orderings.

• Hence we divide through nPr by r! to get the number of combinations:
nPr

r!
= n!(n � r)!r! � n

Cr . (299)



7 ELEMENTARY PROBABILITY 160

As an example, suppose we draw that hand of 5 cards from a deck of 52 cards.

The number of di↵erent hands possible is

52
C5 �

52!(52 � 5)!5! = 52 ✓ 51 ✓ 50 ✓ 49 ✓ 48

120
= 2, 598, 960 . (300)

Example 7.7 Out of 10 physics professors and 12 chemistry professors, a com-

mittee of 5 people must be chosen in which each subject has at least 2 repre-

sentatives. In how many ways can this be done?

First thing to note is that there are going to be two kinds of committee: one

with 3 physicists plus 2 chemists, and one with 2 physicists plus 3 chemists. We

deal with each kind separately.

The first kind of committee has 3 physicists, which must be chosen from a

pool of 10. But the ordering doesn’t matter. Therefore the number of ways of

choosing the 3 is 10C3 = 10 ✓ 9 ✓ 8/6 = 120. On the other hand, the number

of ways of choosing the 2 chemists from a pool of 12 is 12C2 = 12✓ 11/2 = 66.

Putting this information together, the total number of di↵erent committees of

the first kind is 120 ✓ 66 = 7920.

The second kind of committee has only 2 physicists. The number of ways of

choosing these 2 is 10C2 = 45. The number of ways of choosing 3 chemists is
12C3 = 220. Therefore the total number of di↵erent committees of the second

kind is 45 ✓ 220 = 9900.

Finally, the total number of committees of the two kinds allowed = 7920+9900 =
17820.

Binomial coe�cients

The numbers nCr are called the binomial coe�cients, because they arise in the
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binomial expansion. In particular,

(p + q)n =
n

=
r=0

n
Crq

r
p
n�r

. (301)

They have the interesting property that

n
Cr = n�1

Cr +
n�1

Cr�1 . (302)

To prove this recursion relation note that

n�1
Cr +

n�1
Cr�1 = (n � 1)!

r!(n � 1 � r)! + (n � 1)!(r � 1)!(n � r)!
= (n � 1)!(n � r) + (n � 1)!r

r!(n � r)!
= (n � 1)!(n � r + r)

r!(n � r)! = (n � 1)!n
r!(n � r)!

= n!

r!(n � r)! = n
Cr . (303)

7.4 Random variables

A random variable X is a variable whose value depends on the outcomes of

an experiment involving some level of randomness or chance.

A random variable may take discrete values (e.g. the outcome of coin tosses)

or it may take a range of continuous values (e.g. the mass of newborn babies).

• For example, let us toss a coin 3 times (our experiment) and take X to

represent the number of heads (the random variable).

The sample space of outcomes is

S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}
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and the value of X can be 0, 1, 2 or 3. In this case, the variable X is

discrete because it can only take discrete values 0,1,2,3. Note that more

than one outcome can give the same value of the random variable.

• A di↵erent example: consider an aircraft flying through some particularly

nasty clear-air turbulence that causes its velocity v to randomly vary. If

we take X to be the instantaneous speed of the plane ∂v∂ we see that X

can take continuous values between 0 and ô, in principle. Again di↵erent

outcomes can yield the same X (e.g. a sharp deviation up and a sharp and

equal deviation down both generate the same speed).

7.5 Discrete probability distributions

Consider a discrete random variable X. For each value X takes, we can assign

a probability.

If X takes the discrete values xi, which have associated probabilities pi, for

i = 1, 2, ..n, then P (X = xi) = pi.

We can then construct a probability function, also called a probability dis-

tribution, usually just denoted P (X), which is simply the probability of any

event associated with X in S.

This function is normalised, as expected, according to

n

=
i=1

P (X = xi) = n

=
i=1

pi = 1 . (304)

As an example, let us return to the coin-tossing game earlier:

• X = 0 corresponds only to TTT , so P (X = 0) = 1/8,
• X = 1 corresponds to the event {HTT, THT, TTH}, so P (X = 1) = 3/8
• X = 2 yields P (X = 2) = 3/8, and X = 3 yields P (X = 3) = 1/8.
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The cumulative probability function (CPF), F (x), is the probability that X

takes a value which is less than or equal to x, i.e.

F (x) = P (X ( x) = =
xi(x

P (X = xi) . (305)

So for a discrete random variable the CPF will be a series of steps at each value

xi, and will be constant between the steps. Note how the ultimate value of

F (x) � 1 as x � ô (in the coin tossing game, x ) 3).

x
x

1/8

3/8

0 1 2 3 0 1 2 3

1/8

1/2

7/8

1

Figure 47: Graphs of P (X) and F (x) for the coin-tossing example.

Example 7.8 A bag contains 6 blue balls and 4 red balls. Three balls are drawn

without replacement. Find the probability function for the number of red balls

drawn.
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Let X be our random variable, corresponding to the number of red balls drawn.

We now construct the probability distribution P (X) piece by piece, by looking

at X = 0, 1, 2 and 3 separately.

• We haveX = 3 when we draw a red on each draw, i.e. ‘RRR‘. The probability

of this is 4/10 times 3/9 times 2/8, which is equal to 1/30. Thus P (3) =
1/30.

• Three di↵erent kinds of draw yield X = 2: RRB, RBR, and BRR (where B

denotes a blue draw). The probability of RRB is 4/10 ✓ 3/9 ✓ 6/8 = 1/10.
The probability of RBR is 4/10✓ 6/9✓ 3/8 = 1/10. The probability of BRR
is 6/10 ✓ 4/9 ✓ 3/8 = 1/10. Thus P (2) = 1/10 + 1/10 + 1/10 = 3/10.

• There are also three di↵erent kinds of draw to give us X = 1: RBB, BRB,

and BBR. The probability of RBB is 4/10✓6/9✓5/8 = 1/6. The probability
of BRB is also 1/6, as is the probability of BBR. Therefore P (1) = 1/6 +
1/6 + 1/6 = 1/2.

• Finally, we examine X = 0, which corresponds only to one kind of draw:

BBB. Its probability is 6/10 ✓ 5/9 ✓ 4/8 = 1/6.
In summary, our probability distribution P (X) is defined through:

P (3) = 1

30
, P (2) = 3

10
, P (1) = 1

2
, P (0) = 1

6
.

Just to check that it is normalised appropriately, we look at the sum

3

=
X=0

P (X) = 1

6
+

1

2
+

3

10
+

1

30
= 5 + 15 + 9 + 1

30
= 1,

and all is good.
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7.5.1 Mean and Variance

The mean of the random variable X is defined to be

E[X] � n

=
i=1

xipi =
n

=
i=1

xiP (X = xi) . (306)

The mean is also often referred to as the expectation value, and the alternative

notations E[X], ÖXã, X, or µ are often used.

If an experiment is repeated a very large number of times then the average value

of the associated random variable X will approach the mean (cf. the Law of

Large Numbers).

For example, consider the three coin tosses in the previous subsection:

E[X] =
n

=
i=1

xiP (X = xi)
= 0 ✓

1

8
+ 1 ✓

3

8
+ 2 ✓

3

8
+ 3 ✓

1

8

= 3

2
.

The mean has the following properties:

1. E[aX] = aE[X] , where a is a constant;

2. If X and Y are two di↵erent random variables (possibly with di↵erent prob-

ability functions), then

E[X + Y ] = E[X] + E[Y ] ; (307)

3. If g(X) is a function of the random variable X then

E[g(X)] = n

=
i=1

g(xi)P (X = xi) . (308)
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We are often interested in the way in which results are spread around the mean.

One measure of this is the variance of X, which we define to be

var(X) = E[(X � E[X])2] . (309)

In other words, the variance is the mean value of the square of the deviation

from the mean.

The standard deviation � is the square root of the variance, i.e.

�
2 = var(X) . (310)

Expanding the bracket in (309) leads to

�
2 = E[X2 � 2Xµ + µ

2]
= E[X2] � E[2µX] + E[µ2]
= E[X2] � 2µE[X] + µ

2
(since µ is a constant)

= E[X2] � 2µµ + µ
2

= E[X2] � µ
2
. (311)

From (311) we are therefore left with the very useful result that the variance �2

and the mean µ are related by

�
2 = E[X2] � µ

2
. (312)

Note that in this expression:

E[X2] = n

=
i=1

x
2
iP (X = xi) . (313)

For our experiment of tossing three coins with X being the number of heads,

we have

E[X2] = 0
2 ✓

1

8
+ 1

2 ✓
3

8
+ 2

2 ✓
3

8
+ 3

2 ✓
1

8

= 3 ,
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so the variance is given as

�
2 = E[X2] � µ

2 = 3 � ⌅3
2
⌦2 = 3

4
. (314)

7.5.2 Binomial distribution

The binomial distribution arises when an experiment has only 2 possible out-

comes, e.g. a single coin toss (heads or tails), probability of surviving a heart

attack (yes or no), asking a random person if they can drive a tractor (yes or

no).

• Let event A, labeled a ‘success’, denote one outcome and B = A, labeled a

‘failure’, the other outcome.

• If the probability of event A is p then the probability of event B is q = 1� p.

• Suppose that the experiment is repeated n times, and let the discrete random

variable X be the number of successes, so that X takes one of the values

0, 1, 2, ..., n. The probability distribution P (X) may be written as

P (X = r) � B(n, p) = n
Crp

r(1 � p)n�r . (315)

This is the binomial distribution.

How did we get to the second formula?

• The sample space of n experiments contains 2n outcomes.

• Each outcome that has r successes has a probability prqn�r.

• But there are lots of outcomes with X = r. We need to add them all up to

get our correct probability:

P (X = r) =
MÃ ““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““–““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““ Œ

p
r
q
n�r + p

r
q
n�r + � � � + p

r
q
n�r = M � prqn�r

How many of them are there? That is, what is M?
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• Actually, M is simply the number of ways of choosing r elements from a set

of n, i.e. nCr.

0.25

0.15

3

0.05

1098765

0.2

4

0.1

0.0

210 5

0.1

0.0

10987

0.25

6

0.2

0.15

0.05

43210

Figure 48: Binomial distributions: B(10, 0.5) (left) and B(10, 0.75) (right).
We can check that the binomial distribution satisfies the normalisation condition

(304):

n

=
r=0

P (X = r) = n

=
r=0

n
Crp

r(1 � p)n�r = (p + 1 � p)n = 1 . (316)
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Mean

We can calculate the mean of the binomial distribution:

E(X) =
n

=
r=0

r  n
Crp

r(1 � p)n�r⇢
=

n

=
r=0

r
n!

r!(n � r)!pr(1 � p)n�r
=

n

=
r=1

n!(r � 1)!(n � r)!pr(1 � p)n�r (the r = 0 term is zero)

= n
n

=
r=1

(n � 1)!(r � 1)!(n � r)!pr(1 � p)n�r
= n

n�1

=
s=0

(n � 1)!
s!(n � 1 � s)!ps+1(1 � p)n�1�s (writing r = s + 1)

= np
n�1

=
s=0

(n � 1)!
s!(n � 1 � s)!ps(1 � p)n�1�s

= np(1 � p + p)n�1 = np . (317)

So the mean of the binomial distribution is µ = np.
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Variance

To find the variance of the binomial distribution we first write

E(X2) =
n

=
r=0

r
2 nCrp

r(1 � p)n�r⇢
=

n

=
r=0

r(r � 1) nCrp
r(1 � p)n�r⇢ + n

=
r=0

r nCrp
r(1 � p)n�r⇢ .(318)

The second term is exactly E(X) (see first line of 317), and is therefore np.

The first term in (318) is

=
n

=
r=0

r(r � 1) n!

r!(n � r)!pr(1 � p)n�r
=

n

=
r=2

n!(r � 2)!(n � r)!pr(1 � p)n�r (the r = 0, 1 terms are zero)

= n(n � 1)p2 n

=
r=2

(n � 2)!(r � 2)!(n � r)!pr�2(1 � p)n�r
= n(n � 1)p2 n�2

=
s=0

(n � 2)!(s)!(n � 2 � s)!ps(1 � p)n�2�s (writing r = s + 2)

= n(n � 1)p2(1 � p + p)n�2 = n(n � 1)p2 . (319)

Hence, back in (318) we have

E(X2) = n(n � 1)p2 + np , (320)

and using (312) and (318) we have the variance of the binomial distribution as

�
2 = n(n � 1)p2 + np � (np)2 = np(1 � p) . (321)

So the standard deviation of the binomial distribution is � =
‘
np(1 � p).

Interestingly, as the sample size, n, gets larger the mean of X increases like n

but the standard deviation, �, increases less rapidly, like
”
n. Thus the relative

width of the distribution �/µ ö 1/”n, and it gets narrower and narrower the

more experiments we do.

Thus many experimental measurements suppress random errors.
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7.5.3 Poisson distribution

The Poisson distribution arises when the number of ‘successes’ in a given event

is unlimited. For instance, what is the distribution of the number of photons

received by a telescope per minute? How many golfers are struck by lightning

every year? The number of goals scored in a football match?

If X is the number of successes (photons received, lightning strikes, etc.), then

it turns out that

P (X = r) = �r
exp(��)
r!

, (322)

which is the Poisson distribution with parameter �. Here, r is the number

of event occurrences, taking possible values r = 0, 1, 2, 3, .... right up to infinity.

Figure 49: Poisson distribution with � = 2.5

We can check that the Poisson distribution satisfies the normalisation condition
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(304):

ô

=
r=0

P (X = r) =
ô

=
r=0

�r
exp(��)
r!

= exp(��) ô

=
r=0

�r

r!

= exp(��) exp(�) .

= 1

Mean

The mean of the Poisson distribution is

E(X) =
ô

=
r=0

r
�r

exp(��)
r!

= exp(��) ô

=
r=1

�r

(r � 1)! (the r = 0 term is zero and can be dropped)

= exp(��)� ô

=
r=1

�r�1

(r � 1)!
= � exp(��) ô

=
s=0

�s

s!
(writing r = s + 1)

= � exp(��) exp(�)
= � . (323)

So the mean of the Poisson distribution is �.
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Variance

To calculate the variance, it is easiest to find E[X2 �X] first:

E[X2 �X] = E[X(X � 1)]
=

ô

=
r=0

r(r � 1)�r
exp(��)
r!

=
ô

=
r=2

�r
exp(��)(r � 2)! (the r = 0, 1 terms are zero)

= exp(��)�2
ô

=
r=2

�r�2

(r � 2)!
= exp(��)�2

ô

=
s=0

�s

s!
(writing r = s + 2)

= �
2

. (324)

Hence,

E[X2] = E[X2 �X] + E[X] = �
2 + � , (325)

having used (323) for the value of E[X]. Hence, from (312)

�
2 = E[X2] � (E[X])2 = � . (326)

The Poisson and Binomial distributions are related. In fact, the Poisson distri-

bution is the Binomial distribution in the limit n � ô, p � 0 but with np = �

held fixed, see Figure 50.

7.6 Continuous probability distributions

We now consider a random variable X which can take any value in a continuous

range, in general �ô < X < ô.

Because X is continuous we cannot assign a probability to X taking a single

value X = x, but instead we can define the probability that X takes a value in

an infinitesimally small interval, i.e. x ( X ( x + dx.
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Figure 50: Binomial distribution B(100, 0.05) (dark/magenta) and Poisson distribution

with � = 5 (light/green). Here n = 100 is large, but np = � is fixed.

We hence define the probability density function (PDF) f(x), such that

P (x ( X ( x + dx) = f(x) dx . (327)

• The probability that X takes a value in the finite range ↵ ( X ( � is then

given by the integral

P (↵ ( X ( �) = E
↵

�

f(x) dx . (328)

• The PDF for a continuous random variable is the equivalent of the probability

function of a discrete random variable. However, f(x) on its own is not a

probability.

• We have that f(x) ' 0 to ensure that all probabilities are positive. Also

f(x) can be larger than 1 over some subset of possible X, but the integral

over any such range must be less than 1.
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• The PDF must obey the normalisation condition

E ô

�ô
f(x) dx = 1 , (329)

• The cumulative probability function (CPF), F (x), is defined to be the prob-

ability that X ( x,

F (x) = P (X ( x) = E x

�ô
f(x) dx . (330)

We can see straightaway that dF/dx = f(x).
7.6.1 Mean and variance

The mean and variance of a continuous random variable can be defined by a

simple modification of the definitions for a discrete random variable.

Specifically, the mean is given by

E(X) = E ô

�ô
xf(x) dx . (331)

To calculate the variance, �2, we first find

E(X2) = E ô

�ô
x
2
f(x) dx , (332)

and then use the result (312), i.e.

�
2 = E[X2] � (E[X])2 . (333)

As an example, consider the uniform distribution for which the random vari-

able X is uniformly distributed between X = 0 and X = 1, i.e. takes any value

in that range equally regularly. This is finite-bandwidth white noise, manifesting

in, for example, a random number generator on a computer, quantisation error

when transferring analogue to digital signals, and is also an approximation to

the sound of a crashing cymbal (at least in old school drum machines).
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• The PDF is hence f(x) = 1 for 0 & x & 1, and 0 otherwise. Obviously f(x)
is correctly normalised because Dô

�ô f(x)dx = D 1

0 1 dx = [x]10 = 1.

• The mean should be 1/2 by symmetry, but let us check the formula:

µ = E 1

0
xdx = 1

2
x2⇢1

0
= 1

2
. (334)

• What about the variance?

�
2 = ÖX2ã � µ

2 = E 1

0
x
2
dx � ⌅1

2
⌦2 = 1

12
. (335)

Example 7.9 Find the mean and variance of the exponential distribution

f(x) = ~ÑÑÑÇÑÑÑÄ
� exp(��x) x ) 0

0 x < 0 .
(336)

What is the probability that X takes a value in excess of two standard deviations

from the mean?

We begin by computing the mean µ. Integration by parts helps us here:

µ = E ô

�ô
xf(x) dx = E ô

0
�xe

��x
dx,

= �xe��x⇢ô
0
+ E ô

0
e
��x

dx,

= 0 + ��1

�
e
��x⌧ô

0

= 1

�
.

Next we compute the variance �2 = E(X2) � E(X)2. First we work out the

first term on the right side:

E(X2) = E ô

�ô
x
2
f(x) dx = E ô

0
�x

2
e
��x

dx,

= �x2e��x⇢ô
0
+ 2E ô

0
xe

��x
dx

= 0 +
2

�
µ = 2

�2 .
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Therefore, �2 = E(X2) � E(X)2 = 2/�2 � 1/�2 = 1/�2.

One standard deviation is � = 1/� and the mean is µ = 1/�. We are interested

in finding the probability of ∂X � µ∂ > 2�, or in other words when X > 1/� +
2/� = 3/� or X < 1/� � 2/� = �1/�. From the distribution function we see

that there is zero probability of getting a negative value for X, so we discount

the second case. The probability of the first case is:

P ⌅X > 3

�
⌦ = E ô

3/� �e
��x

dx = �e��x⇢ô
3/� = e

�3 = 0.0498.

7.6.2 The normal distribution

The normal (or Gaussian or bell curve) distribution is the most important distri-

bution in statistics. It is ubiquitous in science, as a consequence of the central

limit theorem: the average of a huge number of random and independent ex-

periments will be distributed increasingly like a normal distribution.

The normal distribution is defined by

f(x) = 1”
2⇡ �

exp ⌫�(x � µ)2
2�2 � . (337)

where µ is the mean and �2 is variance. It is often denoted N(µ, �2).
To handle the normal distribution we need the following pieces of information:

E ô

�ô
exp(�x2) dx =

”
⇡ , (338)

a result which can be proved using double integrals (see next term);

E ô

�ô
x exp(�x2) dx = 0 , (339)

a result which follows straight from the fact that the integrand is an odd func-

tion; and

E ô

�ô
x
2
exp(�x2) dx =

”
⇡
2

, (340)
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Figure 51: The normal distribution with µ = 0 and � = 1.

a result which follows by writing the integrand as x.x exp(�x2), integrating by

parts and then using (338).

We first check the normalisation condition (329):

E ô

�ô
f(x) dx = 1

�
”
2⇡

E ô

�ô
exp ⌫�(x � µ)2

2�2 � dx

= 1

�
”
2⇡

E ô

�ô
exp(�y2)”2� dy

= 1 . (341)
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Mean

The mean follows from

E(X) = E ô

�ô
xf(x) dx

= 1

�
”
2⇡

E ô

�ô
x exp ⌫�(x � µ)2

2�2 � dx

= 1

�
”
2⇡

E ô

�ô
(x � µ + µ) exp ⌫�(x � µ)2

2�2 � dx

= 1

�
”
2⇡

E ô

�ô
µ exp ⌫�(x � µ)2

2�2 � dx since the term with x � µ is odd

= µE ô

�ô
f(x) dx

= µ using (341) . (342)

Variance

To find the variance we first compute the expectation value of X2 as

E(X2) = E ô

�ô
x
2
f(x) dx

= 1

�
”
2⇡

E ô

�ô
x
2
exp ⌫�(x � µ)2

2�2 � dx

= 1”
⇡
E ô

�ô
(µ +

”
2�y)2 exp(�y2) dy using substitution x � µ =

”
2�y

= 1”
⇡
E ô

�ô
(µ2 + 2

”
2�µy + 2�

2
y
2) exp(�y2) dy

= 1”
⇡
µ2”

⇡ + �
2”

⇡⇢ using (338, 339 and 340)

= µ
2 + �

2
, (343)

which indeed proves that the variance is �2.
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Cumulative probability distribution

The cumulative probability function for the normal distribution is

F (x) = 1

�
”
2⇡

E x

�ô
exp ⌫�(y � µ)2

2�2 � dy . (344)

The integral here cannot be written in terms of elementary functions. Instead

it introduces a new special function, the error function, erf(x), defined to be:

erf(x) = 2”
⇡
E x

0
e
�t2

dt,

which appears frequently in mathematics and science (especially in problems

dealing with di↵usion, such as the heat equation). Note that it is an odd

function.

Figure 52: The error function erf(x)
Hence the cumulative probability distribution can be written as

F (x) = 1

2
+

1

2
erf ⌅x � µ

�
”
2
⌦ (345)

As an example, suppose that a certain manufacturing process produces com-

ponents whose length is normally distributed with mean 0.5cm and standard

deviation 0.005cm, and suppose that a component is rejected if its length dif-

fers from the mean by more than 1%.
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If we set the random variable X to be the length of the component, then the

probability any given component must be rejected is

P (reject) = P (X > 0.5 + 0.005) + P (X < 0.5 � 0.005)
= 1 � P (X < 0.505) + P (X < 0.495)
= 1 � F (0.505) + F (0.495) . (346)

We now bring in the error function and get

P (reject) = 1 �
1

2
�

1

2
erf ⌅0.505 � 0.5

0.005
”
2

⌦ + 1

2
+

1

2
erf ⌅0.495 � 0.5

0.005
”
2

⌦ ,
= 1 � erf ⌅ 1”

2
⌦ ,

where we have used the oddness of the error function to simplify things.

Computing the error function (using tables or Taylor series), gives us P (reject) =
0.3174. So the proportion of rejected items is a massive 31.74%. Probably best

to design a better manufacturing process; one that produces the components

with a tighter distribution. (Suppose, in fact, that a new process is implemented

and its standard deviation is � = 0.001 cm; what is P (reject) now?)

Another example: The Higgs boson detection was often quoted as being at the

“5-sigma level”. This means the following: if we assume that the Higgs cannot

exist ever, then the detection at CERN was the result of a random fluctuation

that was 5 standard deviations away from the mean.

What is the probability that the fluctuation was actually just noise and not the

Higgs, assuming the fluctuations were normally distributed?

We want to work out

P (∂X � µ∂ > 5�) = 1 � F (µ + 5�) + F (µ � 5�),
= 1 � erf(5/”2) ⌅ 5.733 ✓ 10

�7
.
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So the probability that the detection was just due to random noise was roughly

0.00006%. It is up to us then to decide whether this is good enough to accept

that the Higgs was detected.

• The first gravitational wave detection by LIGO in 2015 of a binary black hole

merger (GW150914) was regarded as a 5-sigma result. But a more recent

detection of a di↵erent colliding black hole binary (GW151012) was only 2-

sigma, meaning that the probability that the signal was from something else

is roughly 5%. Not nearly as compelling.

• In fact, a result to 2-sigma is regarded in many fields as being su�ciently

significant as proof, certainly in drug trials. But it is also means that 1 in 20

published results (using this criterion) are probably wrong . . . .

• And all this presupposes that we have a good model for the random (or

other) fluctuations in the system. In other words: is the mean, against which

we are basing our sigma, well constrained? A famous example: in 2014 the

BICEP2 instrument in Antarctica detected a signal interpreted as evidence

of gravitational waves from the primordial universe. Researchers claimed the

detection was around 6 sigma. In fact, they had not accounted for the e↵ect

of dust in the Milky Way which could easily explain their signal within the

probabilities, no outrageous fluctuations needed. The ‘mean’ was not where

they thought it was!

Example 7.10 2007 Paper 1 question 4.

(a) The probability of the number n of persons passing a certain checkpoint

during a day is

P (n;�) = �n
exp(��)
n!

,
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which defines a Poisson distribution with parameter �. Show that

ô

=
n=0

P (n;�) = 1 .

The probability that any given person is male is p. Show that the probability

that k males and l females pass the checkpoint during a day is

P (k males, l females) = ⇧k + l

l
↵ pk(1 � p)l�(k+l)

exp(��)(k + l)! .

Hence show that the probability that k males pass (independent of the number

of females passing) during the day conforms to a Poisson distribution with

parameter �p.

(b) A proportion 0.1 of members of a large population have a certain viral

disease, and a further proportion 0.2 are carriers of the virus. A test for the

presence of the virus shows positive with probability 0.95 if the person tested

has the diseases, 0.9 if the person is a carrier and 0.05 if the person in fact is

free of the virus.

Calculate the probability that any given person tests positive.

Calculate the probability that a person who tests negative in fact has the virus

(i.e. either has the diseases or is a carrier).

(a) The first part is just asking you to reproduce the notes:

ô

=
n=0

P (n; �) = ô

=
n=0

�ne��

n!
= e

��
ô

=
n=0

�ne��

n!
= e

��
e
� = 1,

where at the end there we recognised the Taylor series of the exponential func-

tion.

In the next part of the question we are interested in the case when n = k + l

people pass the checkpoint: k of them are male, and l are female. Putting aside
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gender, we know that the probability of getting n people past the checkpoint is

P (n; �) = �ne��/n!.
Next, we need to multiply this result with the probability that out of these n

people, l of them were female. This brings in the binomial distribution, because

this is is equivalent to doing n experiments, with each experiment producing

one of two outcomes: female or male. We are interested in the probability of

getting l ‘successes’ (i.e. females) in n experiments, given that the probability

of getting a single success is 1 � p. The binomial distribution tells us that the

probability of this is

n
Cl(1 � p)lpn�l =k+l

Cl(1 � p)lpk.
Multiplying the result with our precious probability (and setting n = k+ l) yields

P (k males, l females) = �k+le��(k + l)! k+l
Cl p

k(1 � p)l.
The final part of (a) wants us to work out the probability that k males pass the

checkpoint whatever the number of women who passed. One way to compute

this is to work out the probability that k men pass and 0 women pass, then

add to that the probability that k men pass and 1 woman passes, then add the

probability that k men pass and 2 women pass, and so on and so on. We then

have, first rewriting k+lCl in terms of factorials:

P (k males) = ô

=
l=0

�k+le��(k + l)!k+lClp
k(1 � p)l,

=
ô

=
l=0

�k+le��(k + l)! (k + l)!
k!l!

p
k(1 � p)l,

= �ke��pk

k!

ô

=
l=0

�l(1 � p)l
l!

= (�p)ke��
k!

e
�(1�p)

,
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where in the last line we recognise that <ô
l=0 �

l(1� p)l/l! is the Taylor series of
e�(1�p) (treating �(1 � p) as the x in ex).

Finally we get

P (k males) = (�p)ke��p
k!

,

which is the Poisson distribution but with p� instead of �.

(b) Okay, just to simplify notation, let i indicate ‘infected‘ (i.e. exhibiting the

diseases), c indicate ‘carrier‘ (carrying but not exhibiting), and f indicate ‘free‘.

In summary, we then have P (i) = 0.1, P (c) = 0.2, and P (f) = 1� 0.1� 0.2 =
0.7.

Next let us denote p as testing positive to the test, and n as testing negative

to the test.

The information given us regarding the test can be summarised by:

P (p∂i) = 0.95, P (p∂c) = 0.9, P (p∂f) = 0.05.

And thus P (n∂f) = 1 � 0.05 = 0.95.

The sets i, c, and f are mutually exclusive, therefore we can write down the

total probability of testing positive as:

P (p) = P (p = i) + P (p = c) + P (p = f).
Using the definition of conditional probability this may be re-expressed as

P (p) = P (p∂i)P (i) + P (p∂c)p(c) + P (p∂f)P (f),
= 0.95 � 0.1 + 0.9 � 0.2 + 0.05 � 0.7,

= 0.31

It also follows that P (n) = 1 � P (p) = 0.69.

The last part of the question asks us to find the probability that someone is

either a carrier or infected, given that they tested negative, in mathematical
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terms: P (i < c∂n). To ease notation we write f = i < c. Bayes’ law says:

P (f∂n) = P (n∂f)P (f)
P (n) .

We know that P (f) = 0.1 + 0.2 = 0.3 and P (n) = 0.69 but P (n∂f) requires

a bit more work. We have the total probability of testing negative as

P (n) = P (n = f) + P (n = f) = P (n∂f)P (f) + P (n∂f)P (f),
which gives us

P (n∂f)P (f) = P (n) � P (n∂f)P (f) = 0.69 � 0.95 � 0.7 = 0.025.

Therefore

P (f∂n) = 0.025
0.69

⌅ 0.036

So about 3.6 %.

Example 7.11 2007 Paper 2 question 3.

(a) The probability of an experiment that involves counting events having the

result N = n (where n is a non-negative integer) is

P (N = n) = A⇢
n
,

where ⇢ (0 < ⇢ < 1) is given. Find the normalising constant A. Calculate the

probability that N > n. Calculate the probability that N > n, conditional on

N > m (n > m).

(b) The probability density function for a continuous random variable X is

f(x) = B⇢
x � B exp(��x) (� = ln(⇢�1))

where x takes values between 0 and ô. Find the normalising constant B.

Calculate the probability that X > x, conditional on X > y (x > y). Deduce
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the probability density function for X, conditional on X > y. Calculate the

variance of X, conditional on X > y.

(a) The total probability should be one, i.e. <ô
r=0 P (N = r) = 1. But

ô

=
r=0

P (N = r) = A
ô

=
r=0

⇢
r

is an infinite geometric series that sums to A/(1 � ⇢). Hence A = 1 � ⇢ if the

probability distribution is normalised properly.

P (N > n) is just the sum of all probabilities that N > n:

P (N > n) = ô

=
r=n+1

P (N = r) = ô

=
r=n+1

(1 � ⇢)⇢r
=

ô

=
s=0

(1 � ⇢)⇢n+1⇢s,
= (1 � ⇢)⇢n+1 ô

=
s=0

⇢
s
,

= (1 � ⇢)⇢n+1 1

1 � ⇢
= ⇢

n+1
.

The last part of this section asks us to find the conditional probability P (N >
n∂N > m). In other words, given that we have counted m events already,

what is the probability that we ultimately count n (> m) or, put another way,

another n � m events. From the definition of the conditional probability this

can be re-expressed as

P (N > n∂N > m) = P ((N > n) = (N > m))
P (N > m) = P (N > n)

P (N > m)
because n > m and so (N > n) = (N > m) = N > n. Using the previous part

of the problem, we then have

P (N > n∂N > m) = P (N > n)
P (N > m) = ⇢n+1

⇢m+1 = ⇢
n�m

.
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In other words: the probability of just counting another n�m events more than

what we have already. The number of previous events counted does not really

enter directly; thus the process has no memory.

(b) First we work out the normalisation from

E ô

0
f(x) dx = B E ô

0
e
��x

dx = B ⌫�e�x
�

�ô
0

,

= B
�

= 1.

Thus B = �.

The conditional probability is similar to earlier:

P (X > x∂X > y) = P ((X > x) = (X > y))
P (X > y) = P (X > x)

P (X > y)
the last equality following from x > y. Given that we have counted y events

already, what is the probability of counting an additional x � y?

Next we work out P (X > x):
P (X > x) = E ô

x
�e

��z
dz = [�e��z]ôx = e

��x
.

Thus we have

P (X > x∂X > y) = e
��(x�y) = P (X > x � y).

This shows that the exponential distribution is ‘memoryless‘, as before. It does

not matter how many events we have already counted, the clock ‘restarts‘ (in

terms of probability) after each count.

Let us define the new ‘condtitional’ pdf by g(x). Denote its cumulative prob-

ability function by G(x). The two are related by G(x) = D x

0 g(x)dx. This

definition can be manipulated so that

G(x) = 1 � E ô

x
f(x)dx = 1 � P (X > x∂X > y) = 1 � e

��(x�y)
.
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We then di↵erentiate both sides with respect to x, noting that dG/dx = g,

which yields g(x) = �e��(x�y). But note that this is true only for x > y. For

x < y, the pdf is not really defined, and thus on this range we set g = 0. In

summary

g(x) = ~ÑÑÑÇÑÑÑÄ
�e��(x�y) x > y

0 x < y

We first work out the mean:

E(X∂X > y) = E ô

�ô
xg(x)dx = E ô

y
�xe

��(x�y)
dx = E ô

0
�(y + z)e��zdz,

where we have made the transformation z = x � y. This then gives us

E(X∂X > y) = �y ⌫e��z�� �ô
0

+ E ô

0
�ze

��z
dz,

note that the second term is just the mean of the usual exponential distribution,

which we computed earlier in the notes. It is just equal to 1/�. The first integral
is easy to do, and we get finally:

E(X∂X > y) = y +
1

�
.

Finally, we compute the variance from the formula

Var(X∂X > y) = E(X2∂X > y) � E(X∂X > y)2.
We have the second term, we now need the first term. Using integration by

parts

E(X2∂X > y) = E ô

y
x
2
�e

��(x�y)
dx = �e

�y ⌫�x2
�

e
��x�ô

y

+ �e
�y E ô

y

2x
�
e
��x

dx,

= y
2 +

2

�
E(X∂X > y),

= y
2 +

2

�
⌅y + 1

�
⌦ .
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Now putting everything together we have:

Var(X∂X > y) = E(X2∂X > y) � E(X∂X > y)2,
= y

2 +
2

�
⌅y + 1

�
⌦ � ⌅y + 1

�
⌦2 ,

= 1

�2 .


