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4 Di↵erentiation

Rates of change, usually with respect to time and space, underpin so many of

our scientific theories of the world. They regularly appear in the governing dif-

ferential equations of a theory. There are almost too many examples to list, but

prominent equations include: Newton’s second law (dynamics), Schroedinger’s

equation (quantum mechanics), Einstein’s field equations (general relativity),

the Navier-Stokes equation (fluid dynamics), the Malthus and logistic models

(population growth), Fisher’s equation (gene propagation), and chemical reac-

tion kinetics (chemistry).

In this part of the course we revise the basics of di↵erentiation, which provides

the mathematical foundations of change. We focus only on functions of a single

variable.

4.1 First Principles

The derivative of a function y(x) at a given point x will be denoted dy/dx and

is defined by the limiting process:

dy

dx
⌘ lim

�x!0

y(x+ �x)� y(x)

�x
. (151)

Geometrically, the derivative is the gradient of the tangent line to the curve

given by y(x) at the point x. The tangent line has a slope such that it only just

touches the curve at this point.

Example: di↵erentiate y = x
3 from first principles:

y(x+ �x) = (x+ �x)
3
= x

3
+ 3x

2
�x+ 3x(�x)

2
+ (�x)

3

y(x+ �x)� y(x) = 3x
2
�x+ 3x(�x)

2
+ (�x)

3
. (152)
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1. Differentiation 
You be familiar already with the idea of differentiation and how to handle common 
functions; indeed, you should already be familiar with most or all of the material in this 
chapter. Inclusion of the material here is both as a reminder and to provide the basis on 
which later parts of the course can build. 

1.1  First Principles 

The derivative of a curve at a given point is the gradient of the line 
that is tangent to the curve at that point. If we have a function of a 
single variable, ( )y y x= , then the derivative of y  with respect to x , 
denoted dy dx , is defined by the limiting process  

 ( ) ( )
0

lim
x

y x x y xdy
dx xδ

δ
δ→

+ −
= . (1) 

This is shown graphically in figure 26.  

 

x 
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y(x+δx) − y(x) 
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Figure 1: Definition of differentiation as the limit of the gradient between two 
points on a curve. 

The course next term will look at differentiation of functions of 
more than one variable, e.g. the height ( ),h x y  of a hill as a 
function of the horizontal position ,x y . 

As an example, we will differentiate 3y x=  from first principles:  

 3 3 2 2 3( ) ( ) 3 3 ( ) ( )y x x x x x x x x x xδ δ δ δ δ+ = + = + + +  

so 2 2 3( ) ( ) 3 3 ( ) ( )y x x y x x x x x xδ δ δ δ+ − = + + , 

thus 2 2( ) ( ) 3 3 ( ) ( ) .y x x y x x x x x
x

δ δ δ
δ

+ − = + +  

Stuart Dalziel� 28/9/2016 17:52
Comment [1]: 2015: Lecture 11 

Figure 35: Definition of di↵erentiation as the gradient of a curve.

Now

y(x+ �x)� y(x)

�x
= 3x

2
+ 3x(�x) + (�x)

2
.

Take the limit �x ! 0 and the second and third terms on the right disappear,

so that

dy

dx
⌘ lim

�x!0

y(x+ �x)� y(x)

�x
= 3x

2
. (153)

4.1.1 Di↵erentiability

Functions are not necessarily di↵erentiable everywhere.

Example 1: consider the Heaviside step function H(x), defined so that H(x) =

0 for x < 0 and H(x) = 1 for x � 0. What is its derivative at x = 0?

If we approach the limit in the definition of the derivative from negative values
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of �x, then [y(0) � y(�x)]/�x = 1/�x, which diverges as �x ! 0. So the

derivative at x = 0 using (151) cannot exist.

This is an example of a discontinuous function; such functions are not di↵eren-

tiable at their discontinuities.

Example 2: consider the absolute value function y(x) = |x|, which is continu-

ous but not smooth at x = 0.

At x = 0, using the formal definition of the derivative, we obtain d|x|/dx = 1

if we approach the limit from above x = 0 (positive �x), and d|x|/dx = �1

if we approach the limit from below x = 0 (negative �x). We conclude that

the derivative is not well-defined, as it depends on which direction you take the

limit.

For a function y(x) to be di↵erentiable at a point x, the function must be both

continuous and smooth.

4.1.2 Higher order derivatives

The derivative dy/dx is a function of x, so we can di↵erentiate it again (as-

suming it is smooth and continuous). This is the second derivative, which is

denoted by

d
2
y

dx2
⌘ d

dx

✓
dy

dx

◆
, (154)

It measures the rate of change of the slope, i.e. its curvature.

The notation for going further and taking the nth derivative is

d
n
y

dxn
⌘ d

dx

✓
d
n�1

y

dxn�1

◆
. (155)
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So, for the example with y = x
3, we have

dx
3

dx
= 3x

2
,

d
2
(x

3
)

dx2
=

d(3x
2
)

dx
= 6x , (156)

d
3
(x

3
)

dx3
=

d(6x)

dx
= 6 ,

d
4
(x

3
)

dx4
=

d(6)

dx
= 0 ,

where all derivatives of higher order than the fourth are zero.

4.1.3 Alternative notations

The dy/dx notation for the derivative of y(x) was proposed by Leibniz. How-

ever, Newton originally had a more compact notation using dots (or primes):

ẏ =
dy

dx
or y

0
=

dy

dx
,

ÿ =
d
2
y

dx2
or y

00
=

d
2
y

dx2
.

For higher order derivatives it can be unwieldy to employ dots and dashes.

Generally we use the more compact notation for the n
th derivative

y
(n)
(x) =

d
n
y

dxn
.

Note that some people use Roman numerals with this convention, so that

d
4
y/dx

4
= y

iv
(x) and d

5
y/dx

5
= y

v
(x).

4.2 Derivatives of elementary functions

Little progress is possible in calculus without knowing the basic derivatives of

elementary functions, including powers of x, trigonometric, exponential and

logarithmic functions.
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You should have the following on automatic recall:

y = x
n ) dy

dx
= nx

n�1
,

y = e
x ) dy

dx
= e

x
,

y = ln x ) dy

dx
=

1

x
,

y = sin x ) dy

dx
= cosx ,

y = cosx ) dy

dx
= � sin x ,

y = tan x ) dy

dx
=

1

cos2 x
.

You may not be as familiar with the derivatives of the hyperbolic functions

introduced in Section 3:

y = sinh x ) dy

dx
= coshx ,

y = coshx ) dy

dx
= sinh x,

y = tanh x ) dy

dx
=

1

cosh
2
x
.

However, these are easy to derive using the definitions of the hyperbolic func-

tions. For example, di↵erentiating sinh x we get

d sinh x

dx
=

d

dx


1

2

�
e
x � e

�x
��

=
1

2

�
e
x
+ e

�x
�
= coshx .

The hyperbolic and trigonometric cases are similar, but note the sign di↵erence

between the derivatives of cosh x and cos x.

4.3 Rules for di↵erentiation

4.3.1 The product rule

Sometimes we are given a product of functions in the form

y(x) = u(x)v(x) , (157)
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where we know how to di↵erentiate the factors u(x) and v(x) individually.

The rule for di↵erentiating this product of functions is the following:

d(uv)

dx
=

du

dx
v + u

dv

dx
(158)

This result can be produced from first principles relatively quickly:

y(x+ �x)� y(x)

�x
=

u(x+ �x)v(x+ �x)� u(x)v(x)

�x

=
u(x+ �x)v(x+ �x)� u(x)v(x+ �x)

�x

+
u(x)v(x+ �x)� u(x)v(x)

�x

=


u(x+ �x)� u(x)

�x

�
v(x+ �x) + u(x)


v(x+ �x)� v(x)

�x

�
.

We now take the limit �x ! 0 and get the result.

Example 4.1 Di↵erentiate y = lnx sin x.

First set u = ln x and v = sin x. Then:

d(ln x sin x)

dx
=

d ln x

dx
sin x+ ln x

d sin x

dx
=

sin x

x
+ ln x cos x.

4.3.2 The chain rule

Often we are given complicated expressions in which we have a function y =

f(u) with u = u(x) itself being a function of x (e.g. y = f(u) = sin u and

u(x) = x
2, so that y = sin x

2). The method for di↵erentiating a ‘function of a

function’ is called the chain rule and is given by

d(f(u(x))

dx
=

df

du

du

dx
(159)
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We can understand why this rule arises by writing

f(u(x+ �x))� f(u(x))

�x
=


f(u(x+ �x))� f(u(x))

u(x+ �x)� u(x)

� 
u(x+ �x)� u(x)

�x

�
.

(160)

Next write �u = u(x+ �x)� u(x), i.e. the accompanying small change in the

function u due to the small change �x in x.

We then have:

f(u(x+ �x))� f(u(x))

�x
=


f(u+ �u)� f(u)

�u

� 
u(x+ �x)� u(x)

�x

�
, (161)

and we now take the limit �x ! 0 (so that necessarily �u ! 0 as well). The

first factor becomes df/du and the second factor du/dx.

Example 4.2 Di↵erentiate sin x
2 and ln(cosx) with respect to x.

So we can write f(u) = sin u where u = x
2, and we want to find df/dx. First

o↵, we have
df

du
= cosu,

du

dx
= 2x.

The using the chain rule we have:

df

dx
=

df

du

du

dx
= (cosx

2
)2x.

Okay, for the second problem, let us set now f(u) = ln u and u = cosx. We

note:
df

du
=

1

u
,

du

dx
= � sin x,

thus
df

dx
=

1

cos x
(� sin x) = � tan x.
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4.3.3 The quotient rule

We have already seen how to di↵erentiate the product uv, now we consider the

quotient u/v. In this case, we can find the derivative from the formula:

d

dx

⇣
u

v

⌘
=

v(du/dx)� u(dv/dx)

v2
(162)

This result comes about via the product and chain rules. First, write the quotient

u/v as the product

u

v
= u⇥

✓
1

v

◆
. (163)

Now di↵erentiate (163) using the product rule (158) to give

d

dx

⇣
u

v

⌘
=

du

dx
⇥
✓
1

v

◆
+ u

d

dx

✓
1

v

◆
. (164)

Next use the chain rule (159) to calculate

d

dx

✓
1

v

◆
=

d

dv

✓
1

v

◆
dv

dx
= � 1

v2

dv

dx
. (165)

Finally substitute this result back into (164) to find

d

dx

⇣
u

v

⌘
=

1

v

du

dx
� u

v2

dv

dx
, (166)

and group terms over the common denominator v2.

Example 4.3 Di↵erentiate (sin x)/x with respect to x.

d

dx

✓
sin x

x

◆
=

xd(sin x)/dx� sin x(dx/dx)

x2
=

x cos x� sin x

x2
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4.3.4 Implicit di↵erentiation

It is also possible to find the derivative of y with respect to x from an equation

of the form

g(y) = f(x) , (167)

where g and f are given functions. For example: ey cos y = x cos x. Here, the

exact dependence of y on x may not be known explicitly at all. Rather, it is

implicit.

Using the chain rule:

dg(y)

dx
=

dg(y)

dy

dy

dx
, (168)

so that di↵erentiating (167) with respect to x we have

dg(y)

dy

dy

dx
=

df

dx
. (169)

Rearranging, we find that

g(y) = f(x) ) dy

dx
=

df/dx

dg/dy
. (170)

An important special case gives the ‘reciprocal rule’. Suppose we want to

di↵erentiate y(x) but only know the derivative of its inverse function x(y), i.e.

dx/dy.

Okay, set f(x) = x in (167), so now x = g(y). Then we have immediately

dy

dx
=

1

dx/dy
. (171)

Example 4.4 Find the derivative of y = tan
�1

x with respect to x.
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Let us write x = tan y and then take the y derivative:

dx

dy
=

d tan y

dy
= sec

2
y = 1 + tan

2
y = 1 + x

2
.

But the reciprocal rule says:

dy

dx
=

1

dx/dy
=

1

1 + x2
,

So d tan
�1

x/dx = 1/(1 + x
2
).

Example 4.5 A circle has equation y
2
= 9� (x� 1)

2. Find the gradient.

We want to find an expression for dy/dx. The equation for a circle is of the form

g(y) = f(x), with g = y
2 and f = 9 � (x � 1)

2. The implicit di↵erentiation

law gives us

dy

dx
=

df/dx

dg/dy
=

�2(x� 1)

2y
= ± (x� 1)p

9� (x� 1)2
.

Example 4.6 [2006 paper 2, Question 1A]. If

y = sin
�1

✓
xp

1 + x2

◆

find dy/dx as a function of x.

First write sin y = x/
p
1 + x2, which is in the form g(y) = f(x) and use the

implicit di↵erentiation formula. We have dg/dy = cos y. We also have, using

the quotient rule:

df

dx
=

d

dx

xp
1 + x2

=

p
1 + x2(dx/dx)� (d

p
1 + x2/dx)x

1 + x2
,

=

p
1 + x2 � [x(1 + x

2
)
�1/2

]x

1 + x2
,

=
1

(1 + x2)3/2
.
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Putting the two results together:

dy

dx
=

df/dx

dg/dy
=

1

cos y(1 + x2)3/2
.

It would be nice to have the RHS in terms of x only. To do this, note

cos y =

q
1� sin

2
y =

r
1� x2

1 + x2
=

1p
1 + x2

.

If we put this into our formula for dy/dx, we get simply:

dy

dx
=

1

1 + x2
.

4.4 Stationary points

A stationary point (also called a ‘turning point’) of the curve y = f(x) is a

point where dy/dx = 0.

Stationary points can be classified using the following rules:

• If d2y/dx2 > 0 at the stationary point, then it is a minimum.

This is because at a minimum the gradient increases through the turning

point.

• If d2y/dx2 < 0 at the stationary point, then it is a maximum.

This is because at a maximum the gradient decreases through the turning

point.

• If d2y/dx2 = 0 at the stationary point, then further investigation is required:

1. if the first nonzero derivative d
n
y/dx

n 6= 0 has n odd, then the stationary

point is a point of inflection;
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Figure 36: Graphs of y = x
3
and y = x

4
.

2. If the first nonzero derivative d
n
y/dx

n 6= 0 has n even and it is positive,

then the stationary point is a minimum;

3. If the first nonzero derivative d
n
y/dx

n 6= 0 has n even and it is negative,

then the stationary point is a maximum.

As examples, consider y = x
3 and y = x

4. Both have a stationary point at

x = 0 with

dy

dx
=

d
2
y

dx2
= 0 .

For y = x
3, the point x = 0 is a point of inflection because

d
3
(x

3
)

dx3
= 6 6= 0 . (172)

For y = x
4, this is a minimum because the first non-zero derivative is even and

positive,

d
4
x
4

dx4
= 24 > 0 . (173)

4.4.1 More on points of inflection

An inflection point is where d
2
y/dx

2
= 0 and also d

2
y/dx

2 changes sign.
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• It is where the curve changes from being concave up to concave down or vice

versa.

• It need not be a stationary point (i.e. where dy/dx = 0).

• If dy/dx > 0 at the inflection point it is a ‘rising point of inflection’; if

dy/dx < 0 it is a ‘falling point of inflection’.

• Between an adjacent maximum and a minimum there must be a point of

inflection.

4.5 Curve sketching

Basic curve sketching techniques are very useful for detemining the main features

of the overall shape of a function y = f(x). It means we can understand the

behaviour of the function without the need to compute it everywhere. In other

words, we can get a qualitative idea of what it is about.

When sketching curves there are a number of things to consider:

1. Where does the curve intercept the x and y axes – i.e. what is the value of

f(0) and what are solutions for f(x) = 0?

2. Is there any symmetry? Is the function even, f(x) = f(�x), or is the

function odd, f(x) = �f(�x)?

3. What are the asymptotes? In other words, what is the behaviour as x !
±1 or at any boundaries?

4. Are there any singularities, that is, points where the function becomes

infinite? These create vertical asymptotes about the singular point.

5. What are the stationary points (i.e. where does dy/dx = 0)? What is their

nature – minimum, maximum or point of inflection?



4 DIFFERENTIATION 102

The following examples illustrate important aspects of curve sketching tech-

niques.

Example 4.7 Sketch y = exp x� sin x.

• Intercepts of the x axis are di�cult to explicitly calculate: we need to solve

exp x = sin x. However, graphically we can see that there are an infinite

number of solutions, but only for x < 0.

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
-1

0

1

2

3

4

Figure 37: Graphs of y = e
x
and y = sin x. The points at which they intercept give us

the locations where y = e
x � sin x crosses the x axis.

On the other hand, the curve cuts the y axis at y = exp(0)� sin(0) = 1.

• What about when x ! ±1? Algebraically, we can see that as x ! �1
then y approaches � sin x. But when x ! 1, we see that y ! e

x.

• What about stationary points? We see that dy/dx = e
x � cos x = 0 also

yields an infinite number of solutions with x  0. Graphically we see that

there is a turning point at x = 0. Is the x = 0 turning point a max or min?

Well, we have d
2
y/dx

2
= e

x
+ sin x which is = 1 at x = 0, and so this

turning point is a minimum.

• We probably have enough information to sketch out the curve. Joining up

� sin x and e
x with a minimum at x = 0.
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Figure 38: Graph of y = e
x � sin x.

Example 4.8 Sketch y =
lnx
x . Show that e⇡ > ⇡

e.

• The x axis intercept can be gleaned from y = ln x/x = 0, and there is only

one: x = 1. The curve cannot cross the y axis because of the ln in the

denominator. And, in fact, the function is not even defined when x < 0.

• Asymptotic behaviour? Clearly as x ! 0, y ! �1. And when x ! 1 the

denominator in y defeats the numerator and y ! 0 from above.

• What about stationary points? Di↵erentiating, we have

dy

dx
=

x(d ln x/dx)� ln x(dx/dx)

x2
=

1� ln x

x2
.

We have turning points wherever dy/dx = 0, i.e. when ln x = 1 which yields

x = e, with y = 1/e. So just one turning point.

Is it a max or min? We could look at the second derivative, but that would

create more algebra. We do know that y ! �1 as x ! 0, and we know

that y ! 0 as x ! 1 from above, therefore the turning point inbetween

these limits must be a maximum.

• We probably have enough to sketch out the curve now:

Let us derive this interesting inequality. We know that y(x) < y(e) for all x > 0.

So let us consider the point x = ⇡. We then have y(⇡) < y(e), which becomes

ln ⇡

⇡
<

ln e

e
=

1

e
.
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Figure 39: Graph of y = ln x/x.

We rearrange this into e ln ⇡ < ⇡ and then ln ⇡
e
< ⇡. Take the exponential of

both sides and we get

⇡
e
< e

⇡
,

as desired.
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5 Integration

Integration is the reverse of di↵erentiation; hence the study of calculus necessi-

tates understanding one and the other.

But quite separately, integration is essential to a myriad of physical processes,

involving areas, volumes, averaging, and correlations.

Integral equations (as opposed to di↵erential equations) underpin applications

as diverse as population dynamics (Volterra’s equation), propagation of fish in

a lake, viscoelasticity, electro and magneto-statics, and wave-scattering.

We can think of integration in two ways:

First, we have the definite integral over some interval bounded by the points

x = a and b:
Z b

a
f(x)dx . (174)

This can be understood as the area (a) under the curve y = f(x) and above

the x-axis in the xy-plane and (b) bounded between the vertical lines x = a

and x = b.

Second, we have the indefinite integral which is expressed without bounds as
Z

f(x)dx . (175)

This can be regarded as the inverse operation to di↵erentiation or the ‘an-

tiderivative’, and it yields another function F (x).

5.1 Integration as area – definite integrals

Consider the curve y = f(x) in the range a 6 x 6 b. We can approximate

the area under the curve by dividing the range up into N small subintervals of
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x

y

a ξ
1

f(x  )
1

ξ ξ ξ
i−1     i i+1

xi+1

f(x  )i
i+1f(x     )

x
1 x

i

bξ
N−1

xN

y=f(x)

Figure 40: Approximation of the definite integral
R b

a f(x) dx.
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length �x, with

�x =
b� a

N
, (176)

so that the end points of the intervals are ⇠0, ⇠1, .., ⇠N with

⇠0 = a

⇠1 = a+ �x

...
...

⇠i = a+ i�x

...
...

⇠N = b .

(177)

We then choose N points x1, x2, ...., xN , one lying in each of the subintervals,

so that

⇠i�1 < xi < ⇠i . (178)

We next construct a rectangle on each subinterval, of length �x and height

f(xi). The area of one rectangle is �xf(xi), and hence the total area of all the

rectangles is

S =

NX

i=1

�xf(xi) . (179)

The idea now is to take the limit �x ! 0, so that the length of each subinterval

goes to zero while the number of subintervals goes to infinity (N = (b�a)/�x !
1).

The integral (if it exists) is then defined as

Z b

a
f(x) dx ⌘ lim

�x!0
S , (180)

and it corresponds to the area between the curve y = f(x) and the x axis in

the range a 6 x 6 b.
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For a given function f(x), the integral (180) may not be well-defined on the

interval a 6 x 6 b. Determining whether f(x) is integrable can be a compli-

cated issue, but if the function is continuous and bounded on the finite interval

then we can be sure the integral converges. Note that if y = f(x) is singular in

a 6 x 6 b, then the definite integral may or may not exist.

Integrals can also have an infinite range (e.g. b ! 1). Provided the integrand

converges rapidly enough then the integral can be well-defined.

5.2 Integration as the inverse of di↵erentiation

Consider the function F (x) represented by the integral on an interval from a up

to a variable x defined as

F (x) =

Z x

a
f(u) du . (181)

We can di↵erentiate F (x) from first principles using the procedure set out in

section 4.1:

dF

dx
= lim

�x!0

F (x+ �x)� F (x)

�x

= lim
�x!0

R x+�x
a f(u) du�

R x
a f(u) du

�x

= lim
�x!0

R x+�x
x f(u) du

�x
. (182)

Now as �x ! 0, the range of integration in the numerator gets shorter and

shorter and the function can be approximated as a constant over that range. In

fact, we have
Z x+�x

x
f(u) du ! �xf(x) as �x ! 0 . (183)

Substituting (183) into (182) yields

dF

dx
= lim

�x!0

f(x)�x

�x
= f(x) , (184)
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and we arrive at the fundamental theorem of calculus:

d

dx

Z x

a
f(u) du = f(x) , (185)

For completeness, we state the second fundamental theorem of calculus: if we

have a function F (x), such that its derivative F
0
(x) = f(x), then

Z b

a
f(u)du = F (b)� F (a) . (186)

The function f(x) here is assumed to be integrable on the domain [a, b].

The integrals we have presented so far are called definite integrals, because

they have limits (e.g. in equation 180 lower limit a and upper limit b). Note

that the value of the lower limit a in (185) has no bearing on the result, so for

instance

d

dx

Z x

2a
f(u) du = f(x) (187)

as well.

It follows that there are an infinite number of di↵erent functions F (x) that we

can di↵erentiate with respect to x to give f(x), but they all di↵er from each

other only by an arbitrary additive constant.

Integrals without specific limits are called indefinite integrals, and for the reason

given in the previous paragraph indefinite integrals are only defined up to an

arbitrary additive constant.

5.3 Methods of integration

We will now review a whole series of common tricks and methods for evaluating

indefinite integrals.
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5.3.1 Reversal of di↵erentiation

This is the simplest case, in which the integral can be done by inspection through

prior knowledge of the appropriate derivative. For example, for the elementary

functions described earlier we have the following:

dxn

dx = nx
n�1 )

R
x
m
dx =

xm+1

m+1 + c (if m 6= �1)

dlnx
dx =

1
x )

R
1
x dx = lnx+ c

d exp(mx)
dx = m exp(mx) )

R
exp(mx) dx =

exp(mx)
m + c ,

(188)

while for trigonometric and hyperbolic functions we have

d sinx
dx = cosx )

R
cos x dx = sin x+ c

d cosx
dx = � sin x )

R
sin x dx = � cos x+ c

d tanx
dx = sec

2
x )

R
sec

2
x dx = tan x+ c

d sinhx
dx = coshx )

R
cosh x dx = sinh x+ c

d coshx
dx = sinh x )

R
sinh x dx = coshx+ c

d tanhx
dx = sech

2
x )

R
sech

2
x dx = tanh x+ c .

(189)
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5.3.2 Inverse trigonometric and hyperbolic functions

To di↵erentiate y = sinh
�1
(x/a) we first write sinh y = x/a. Next we di↵er-

entiate with respect to x

d(sinh y)

dx
=

1

a

) dy

dx
cosh y =

1

a

) dy

dx
=

1

a cosh y

=
1

a

p
sinh

2
y + 1

=
1p

a2 + x2
.

In a similar way we can show that

d(cosh
�1
(x/a))

dx
=

1p
x2 � a2

. (190)

These two results lead us to the standard integrals

Z
dxp

x2 + a2
= sinh

�1
(x/a) + c , (191)

Z
dxp

x2 � a2
= cosh

�1
(x/a) + c . (192)

The inverse hyperbolic integrals (191) and (192) should be contrasted with the

corresponding results for the trigonometric functions, e.g.

Z
dxp

a2 � x2
= sin

�1
(x/a) + c . (193)

Note that cos�1
(x/a) = ⇡/2� sin

�1
(x/a).
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5.3.3 Integrands of form [f(x)]
↵
df/dx

The following integral can be completed directly
Z

df

dx
[f(x)]

↵
dx =

1

↵ + 1
[f(x)]

↵+1
(194)

when ↵ 6= �1. This is the inverse of the chain rule (159). We will give some

examples:

Example 5.1 Complete the following: (a)
R
cos x sin

3
x dx, (b)

R
(tanh

6
x)sech

2
x dx,

(c)
R
x exp(�x

2
)dx.

(a)

Z
cos x sin

3
xdx =

Z
1

4

d sin
4
x

dx
dx =

1

4
sin

4
x+ c.

(b) Remember that d tanh x/dx = sech2x. Now we can do the following:

Z
tanh

6
x sech2xdx =

Z
1

7

d tanh
7
x

dx
dx =

1

7
tanh

7
x+ c.

(c) Z
xe

�x2

dx =

Z
�1

2

de
�x2

dx
dx = �1

2
e
�x2

+ c.

The result (194) does not work when ↵ = �1, but it can be replaced by
Z

df

dx

1

f(x)
dx = ln[f(x)] + c . (195)

Example 5.2 Complete the following: (a)
R
x/(x

2
+ 1), (b)

R
tanh x.

(a)

Z
x

x2 + 1
dx =

Z
1

2

d ln(x
2
+ 1)

dx
dx =

1

2
ln(x

2
+ 1) + c.
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(b)

Z
tanh xdx =

Z
sinh x

cosh x
dx =

Z
1

cosh x

d cosh x

dx
dx,

=

Z
d

dx
[ln(cosh x)] dx,

= ln(cosh x) + c.

5.3.4 Powers of trigonometric functions

Trigonometric identities are often useful. For instance, we can use the identities

cos 2x = 1� 2 sin
2
x ) sin

2
x =

1
2 [1� cos 2x]

cos 2x = 2 cos
2
x� 1 ) cos

2
x =

1
2 [1 + cos 2x]

. (196)

Then we can evaluate
Z

sin
4
x dx =

Z
1

4
(1� cos 2x)

2
dx

=

Z
1

4
(1� 2 cos 2x+ cos

2
2x) dx

=

Z
1

4

✓
1� 2 cos 2x+

1

2
[cos 4x+ 1]

◆
, (197)

where the last step has been accomplished using (196) but with x replaced by

2x. Each term in the integrand of (197) is now of an elementary form, and can

be evaluated to give
Z

sin
4
x dx =

1

4

✓
x� 2

2
sin 2x+

1

2


1

4
sin 4x+ x

�◆
+ c

=
3x

8
� sin 2x

4
+

sin 4x

32
+ c . (198)

Odd powers can often be handled using the method outlined in Section 5.3.3.

For example:

Z
sin

3
x dx =

Z
sin x sin

2
x dx =

Z
sin x(1�cos

2
x) dx = � cos x+

cos
3
x

3
+c .
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(199)

Example 5.3 Complete the following: (a)
R
cos

4
x dx, (b)

R
tan

5
x dx.

Z
cos

4
xdx =

1

4

Z
(1 + cos 2x)

2
dx,

=
1

4

Z
1 + 2 cos 2x+ cos

2
2x dx,

=
1

4

Z
1 + 2 cos 2x+

1

2
(1 + cos 4x) dx,

=
3

8
x+

1

4
sin 2x+

1

32
sin 4x+ c.

Z
tan

5
xdx =

Z
tan

3
x tan

2
x dx =

Z
tan

3
x(sec

2
x� 1)dx,

=

Z
tan

3
x sec

2
x� tan x tan

2
x dx,

=
1

4
tan

4
x�

Z
tan x(sec

2
x� 1)dx,

=
1

4
tan

4
x� 1

2
tan

2
x� ln(cosx) + c

5.3.5 Partial fractions

Consider the integral
Z

1

x2 + x
dx . (200)

We can make progress if we split the integrand into its partial fractions, i.e.

1

x2 + x
=

1

x(x+ 1)
=

↵

x
+

�

x+ 1
(201)
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for constants ↵ and �. To find ↵ and � we write

↵

x
+

�

x+ 1
=

↵(x+ 1) + �x

x(x+ 1)
=

x(↵ + �) + ↵

x(x+ 1)
, (202)

and then comparing the numerator of the final expression in (202) with the

integrand in (200) we see that ↵ + � = 0 and ↵ = 1 (implying � = �1), so

that

1

x(x+ 1)
=

1

x
� 1

x+ 1
. (203)

The integral (200) then becomes
Z

1

x2 + x
dx =

Z
1

x
dx�

Z
1

x+ 1
dx

= lnx� ln(x+ 1) + c . (204)

Example 5.4 Evaluate
Z

x+ 1

1� x+ x2 � x3
dx . (205)

We re-express the integrand in partial fractions, first factorising the denominator:

x+ 1

1� x+ x2 � x3
=

x+ 1

(1� x)(1 + x2)
=

A

1� x
+

Bx+ C

1 + x2
,

=
A+ Ax

2
+Bx+ C � Bx

2 � Cx

(1� x)(1 + x2)
,

=
A+ C + (B � C)x+ (A� B)x

2

(1� x)(1 + x2)
,

where A, B, and C are constants to be determined. In the numerators of the

left and right sides, the coe�cients of 1, x, and x
2 can be equated giving the

equations:

A+ C = 1, B � C = 1, A� B = 0.
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These can be solved quickly to give us A = B = 1 and C = 0. We are now in

a good place to evaluate the integral:
Z

x+ 1

1� x+ x2 + x3
dx =

Z
� 1

x� 1
+

x

1 + x2
dx = � ln(x� 1) +

1
2 ln(1 + x

2
) + c.

5.3.6 Trigonometric and other substitutions

Di�cult integrals can often be simplified by changing variables. The trick is

to know which substitution to use! The main point is to bring the integral to

a recognised form where the integral can be done by inspection using known

results. This technique is best developed by doing lots of di↵erent examples.

Consider the exponential integral
Z

xe
�x2

dx. (206)

Setting u = x
2 and thus du = 2x dx gives

Z
xe

�x2

dx =
1

2

Z
e
�u
du = �1

2
e
�u

+ const. = �1

2
e
�x2

+ const. (207)

It is important in a definite integral to also change the limits to match the new

variable u.

Commonly, one can employ substitutions of trigonometric functions. Consider
Z

1

1 + x2
dx . (208)

Try x = tan t, so di↵erentiating

dx

dt
= sec

2
t ,

which allows the replacement in (208)

dx = sec
2
t dt . (209)
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In this way
Z

1

1 + x2
dx =

Z
1

1 + tan
2 t

sec
2
t dt =

Z
1 dt , (210)

where the last step has been accomplished simply via the identity tan
2
t+ 1 =

sec
2
t.

The integral on the right of (210) is now very easy indeed, and we find that

Z
1

1 + x2
dx = t+ c = tan

�1
x+ c . (211)

When encountering integrands with quadratics in the denominator, we can often

complete the square in order to make the trigonometric substitutions above.

As an example, consider the following integral
Z

dxp
3 + 2x� x2

=

Z
dxp

4� (x� 1)2
=

Z
dup
4� u2

, (212)

where we have substituted u = x� 1 and du = dx. Now substitute u = 2 sin t

with du = 2 cos t dt to find
Z

dup
4� u2

=

Z
2 cos t dt

2 cos t
= t+ const. = sin

�1

✓
x� 1

2

◆
+ const. (213)

Another useful trick when dealing with integrals of awkward trigonometric func-

tions is to use the half-angle formula.

Start with the substitution

tan(x/2) = t . (214)

Then we can show that

sin x = 2 sin(x/2) cos(x/2) =
2

cosec(x/2)sec(x/2)
=

2p
1 + t�2

p
1 + t2

=
2t

1 + t2
,

(215)
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Similarly,

cos x = 2 cos
2
(x/2)� 1 =

2

sec2(x/2)
� 1 =

2

1 + t2
� 1 =

1� t
2

1 + t2
, (216)

and

tan x =
sin x

cos x
=

2t

1� t2
. (217)

Finally we need a way to re-express dx in terms of dt. We have

dt

dx
=

1

2
sec

2 x

2
=

1

2

⇣
1 + tan

2 x

2

⌘
=

1

2
(1 + t

2
).

Thus

dx =
2

1 + t2
dt. (218)

Example 5.5 Use the substitution t = tan(x/2) to evaluate
R
sec x dx.

Z
sec xdx =

Z
1 + t

2

1� t2

2

1 + t2
dt =

Z
2

1� t2
dt.

We now use partial fractions to re-express the integrand. Skipping a few steps,

which you should supply,

2

1� t2
=

2

(1� t)(1 + t)
=

1

1� t
+

1

1 + t
.

Now we can evaluate the integral:
Z

sec x dx =

Z
1

1� t
+

1

1 + t
dt = � ln(1� t) + ln(1 + t) + c.

= ln

✓
1 + t

1� t

◆
+ c = ln

✓
1 + tan(x/2)

1� tan(x/2)

◆
+ c.
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5.3.7 Integration by parts

Integration by parts is closely related to the product rule, which we now rearrange

and then integrate between the limits a 6 x 6 b:
Z b

a
u
dv

dx
dx =

Z b

a

d(uv)

dx
dx�

Z b

a

du

dx
v dx . (219)

The first integral on the right hand side can be completed (using the fundamental

theorem of calculus), and we are then left with the rule for integration by

parts

Z b

a
u
dv

dx
dx =


uv

�b

a

�
Z b

a

du

dx
v dx . (220)

Example 5.6 Evaluate
R
ln x dx and

R
x sec

2
x dx.

Z
ln xdx =

Z
dx

dx
ln xdx = x ln x�

Z
x
d ln x

dx
dx,

= x ln x�
Z

1 dx = x ln x� x+ c.

Z
x sec

2
x dx =

Z
x
d tan x

dx
dx = x tan x�

Z
dx

dx
tan x dx,

= x tan x�
Z

tan xdx = x tan x+ ln(cos x) + c.

5.3.8 Symmetry - integrating even and odd functions

When a function is described as being even or odd then this refers to its sym-

metry or antisymmetry about the y-axis. Specifically

f(x) = f(�x) even function,

f(x) = �f(�x) odd function,
(221)
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For example f(x) = cos x is an even function, f(x) = sin x is an odd function.

Note that for an odd function f(0) = �f(�0), so that f(0) = 0. Note also

that most functions are neither odd nor even!

Evenness or oddness can be important when integrating.

For instance, without doing detailed calculations we can see straight away that

Z ⇡/4

�⇡/4

x

1 + x2
dx = 0 . (222)

The reason for this is that the integrand in (222) is an odd function of x, so

that the area under the curve for x > 0 exactly cancels out with the area under

the curve for x < 0, to give a total area of zero.

Another example, this time involving infinite limits, is
Z 1

�1

sin x

1 + x2
dx = 0 , (223)

because again the integrand is an odd function of x.

In both cases this works because the integration interval itself is symmetric

around x = 0. If we integrated between x = 1 and x = 2 (for example) then

the integrals above would not necessarily be zero.

Of course, for even functions things are di↵erent because now the areas on

either side of x = 0 add up rather than cancel. For example,

Z 1

�1

x
2

1 + x2
dx = 2

Z 1

0

x
2

1 + x2
dx , (224)

while
Z 1

�1

cos x

1 + x2
dx = 2

Z 1

0

cos x

1 + x2
dx . (225)

In (224) the integral on the right hand side can be calculated using the substi-
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tution x = tan y, to give

2

Z 1

0

x
2

1 + x2
dx = 2

Z ⇡/4

0

tan
2
y

1 + tan
2 y

sec
2
y dy = 2

Z ⇡/4

0
tan

2
y dy

= 2

Z ⇡/4

0
(sec

2
y � 1) dy

= 2


tan y � y

�⇡/4

0

= 2� ⇡

2
. (226)

Unfortunately, the integral on the right hand side in (225) requires more ad-

vanced methods beyond the scope of this course (cf. the Cauchy residue theo-

rem).

5.3.9 Reduction formulae

Reduction formulae are often used to reduce a complicated integral down to

something more manageable.

O

x

y(x)

x

y(x)

Figure 41: Even (top) and odd functions.
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For instance, suppose we wanted to know
R ⇡/2
0 sin

10
x dx or

R ⇡/2
0 sin

1000
x dx.

Before tackling these individually, consider:

I2n ⌘
Z ⇡/2

0
sin

2n
x dx (227)

for n a positive integer.

The idea is to relate I2n to a similar integral with a lower power of sin x. We

write

I2n =

Z ⇡/2

0
sin x sin

2n�1
x dx , (228)

and then use integration by parts (with u = sin
2n�1

x and dv/dx = sin x) to

get

Z ⇡/2

0
sin x sin

2n�1
x dx =


� cos x sin

2n�1
x

�⇡/2

0

+ (2n� 1)

Z ⇡/2

0
cos

2
x sin

2n�2
x dx

= (2n� 1)

Z ⇡/2

0
(1� sin

2
x) sin

2n�2
x dx

= (2n� 1)

Z ⇡/2

0
sin

2n�2
x dx� (2n� 1)

Z ⇡/2

0
sin

2n
x dx .

In other words, we have

I2n = (2n� 1)I2n�2 � (2n� 1)I2n , (229)

or rearranging

I2n =
(2n� 1)

2n
I2n�2 . (230)

Equation (230) is a recurrence relation, which means we can just apply it over
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and over again, so

I2n =
(2n� 1)

2n
I2n�2

=
(2n� 1)

2n
.
(2n� 3)

2n� 2
I2n�4

=
(2n� 1)

2n
.
(2n� 3)

2n� 2
.
(2n� 5)

2n� 4
I2n�6

= ... . (231)

Note how the index on the integral goes down by 2 each time. If we do this

operation n times then the index of the integral goes down to zero and we end

up with

I2n =
(2n� 1)(2n� 3)(2n� 5)...⇥ 3⇥ 1

(2n)(2n� 2)(2n� 4)...⇥ 4⇥ 2
I0 . (232)

The point now is that I0 is very easy to calculate, because

I0 =

Z ⇡/2

0
sin

0
x dx =

Z ⇡/2

0
1 dx = ⇡/2 , (233)

and putting (233) back into (232) gives us a closed expression for I2n.

Therefore, back to our original query, we have
R ⇡/2
0 sin

10
x dx = (63/512)⇡.

(We also get
R ⇡/2
0 sin

1000
x dx = 0.0396234 . . . .)

Example 5.7 [2005, paper 2, question 11F]

(a) By expressing the integrand in partial fractions, evaluate

Z 2

1

3x
2
+ 5x+ 1

x(x+ 1)(x+ 2)
dx .

(b) Evaluate the definite integral

Z ⇡/4

0

1

1 + cos 2✓
d✓ .
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(c) Using your results from (b), or otherwise, evaluate the definite integral
Z ⇡/2

0

1

1 + sin�
d� .

First let us rewrite the integrand in terms of several fractions:

3x
2
+ 5x+ 1

x(x+ 1)(x+ 2)
=

A

x
+

B

x+ 1
+

C

x+ 2
,

=
A(x+ 1)(x+ 2) + Bx(x+ 2) + Cx(x+ 1)

x(x+ 1)(x+ 2)
,

=
(A+B + C)x

2
+ (3A+ 2B + C)x+ 2A

x(x+ 1)(x+ 2)
.

Equating the coe�cients of x2, x, and 1 on the numerators of both sides of the

equation gives us three equations for A, B, and C:

A+B + C = 3, 3A+ 2B + C = 5, 2A = 1.

We see that A = 1/2 straightaway. Subtracting the first two equations from

each other gives B = 1, and then C = 3/2 follows. Now we go to the integral

itself:
Z 2

1

3x
2
+ 5x+ 1

x(x+ 1)(x+ 2)
dx =

Z 2

1

1/2

x
+

1

x+ 1
+

3/2

x+ 2
dx,

=


1

2
ln x+ ln(x+ 1) +

3

2
ln(x+ 2)

�2

1

,

=
1

2
(ln 2� ln 1) + ln 3� ln 2 +

3

2
(ln 4� ln 3),

= ln

r
32

3
.

(b) Recall that cos 2✓ = 2 cos
2
✓ � 1, so our integral becomes

Z ⇡/4

0

d✓

1 + cos 2✓
=

Z ⇡/4

0

d✓

2 cos2 ✓
=

1

2

Z ⇡/4

0
sec

2
✓ d✓,

=
1

2
[tan ✓]

⇡/4
0 =

1

2
tan(⇡/4) =

1

2
.
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(c) Obviously, we would like to transform in some way sin� into cos 2✓. Recall

that sin(⇡/2� x) = cos x, so how about the substitution:

� =
⇡

2
� 2✓ ?

Then d�/d✓ = �2, which means d� = �2d✓. The integration limits need

changing too: from [0, ⇡/2] to [⇡/4, 0]. We then have

Z ⇡/2

0

d�

1 + sin�
=

Z 0

⇡/4

�2d✓

1 + sin(⇡/2� 2✓)
= 2

Z ⇡/4

0

d✓

1 + cos 2✓
= 1,

where the last equality comes about because of part (b).


