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Green’s Function

1. Boundary value problem. Obtain the Green’s function G(x, ξ) satisfying

d2G

dx2
− λ2G = δ(x− ξ), 0 ≤ x ≤ 1, 0 ≤ ξ ≤ 1,

where λ is real, subject to the boundary condition G(0, ξ) = G(1, ξ) = 0. Make your life
easier by choosing a convenient linear combination of complementary functions on the two
intervals, i.e. instead of writing

G(x; ξ) =

{
A coshλx+B sinhλx x ∈ [0, ξ]

C coshλx+D sinhλx x ∈ [ξ, 1],

use

G(x; ξ) =

{
A coshλx+B sinhλx x ∈ [0, ξ]

C cosh(λ(1− x)) +D sinh(λ(1− x)) x ∈ [ξ, 1].

Show that the solution to the equation

d2y

dx2
− λ2y = f(x), y(0) = y(1) = 0,

is

y(x) = − 1

λ sinhλ

{
sinhλx

ˆ 1

x
f(ξ) sinh(λ(1− ξ))dξ + sinh(λ(1− x))

ˆ x

0
f(ξ) sinhλξdξ

}
.

2. Initial value problem. Let us revisit the oil tanker problem which you have encountered in IA
Differential Equations. The depth y(t) of an oil tanker under an external force f(t) satisfies
the damped wave equation

Ly := ÿ + 2pẏ + (p2 + q2)y = f(t),

where p, q are constants with p > 0, q 6= 0. Initially the oil tanker is at rest at the equi-
librium so that y(0) = ẏ(0) = 0. In IA Differential Equations we solve this by finding the
complementary functions (damped sinusoidal functions) and then guessing a particular inte-
gral. However guessing does not always work. We are going to solve for general f using two
methods.

(a) The first method is to use the Green’s function. The Green’s function for this equation
is defined to be the family of solutions {G(t; τ)}τ>0 satisfying

LG(t; τ) = δ(t− τ), G(0; τ) = Ġ(0; τ) = 0,

i.e. the resulting depth if the oil tanker experiences an impulse at time t = τ , modelled
by f(t) = δ(t − τ). Solve for the Green’s function using methods from IA Differential
Equations, and sketch it. Hence deduce that if the forcing term f(t) is general, then the
depth of the oil tanker is given by

y(t) =
1

q

ˆ t

0
e−p(t−τ) sin[q(t− τ)]f(τ)dτ.
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(b) Now solve the same problem with the Fourier transform method. [The Fourier trans-
form method can be thought of decomposing any forcing term into the superposition of
uncountably many mice exercising on the oil tanker, where each mouse is exerting a
sinusoidal force of a different frequency and phase. *Also think of an animal metaphor
for the decomposition of the forcing term as uncountably many Dirac deltas δ(t− τ).]

3. Finite asymptotics. A linear differential operator is defined by

Lxy = − 1

x2
d

dx

(
x2
dy

dx

)
+ y.

By writing y = z/x or otherwise, find those solutions of Lxy = 0 which are either (a) bounded
as x→ 0, or (b) bounded as x→∞. Find the Green’s function G(x, a) satisfying

LxG(x, a) = δ(x− a),

and both conditions (a) and (b). Use G(x, a) to solve (subject to conditions (a) and (b))
Lxy(x) = 10≤x≤R, where 1A denotes the indicator function of a set A. Show that the solution
has the form, for suitable constants A,B

y(x) =

{
1 +Ax−1 sinhx, for 0 ≤ x ≤ R,
Bx−1e−x, for x > R.

4. Higher order initial value problem.* Show that the Green’s function for the initial value
problem

d4y

dt4
+ k2

d2y

dt2
= f(t), y(0) = ẏ(0) = ÿ(0) = y(3)(0) = 0,

is given by

G(t, τ) =

{
0, 0 ≤ t ≤ τ
k−2(t− τ)− k−3 sin k(t− τ), t ≥ τ.

Therefore, write down the integral form of the solution when f(t) = e−t.

The Dirac delta function

5. Delta function properties. The continuously differentiable function φ(x) is monotone in-
creasing in [a, b] and has a simple zero at x = c i.e. φ′(c) 6= 0 where a < c < b. Show
that ˆ b

a
f(x)δ(φ(x))dx =

f(c)

|φ′(c)|
.

Show that the same formula applies if φ(x) is monotone decreasing and hence derive a formula
for general (sufficiently nice) φ(x) provided the zeros are simple. Deduce that δ(at) = δ(t)/|a|
for a 6= 0. Also establish that ˆ ∞

−∞
|x|δ(x2 − a2)dx = 1.

6. Delta function derivative*. Show using polar coordinates thatˆ
R2

f(x2 + y2)δ′(x2 + y2 − 1)δ(x2 − y2) dx dy = f(1)− f ′(1).

Fourier transforms Fourier transforms are useful, elegant and uncomplicated. They may
be used in electrical problems or for mathematical interest. Inverse Fourier transforms in
general need to be evaluated using contour integrals which are covered in the final section of
Complex Methods.
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7. Calculate the Fourier transform of f1(x) = 1|x|≤c. Hence, without integration, find the
Fourier transforms of f2(x) = eiax1|x|≤c; f3(x) = sin(ax)1|x|≤c; f4(x) = cos(ax)1|x|≤c.

8. Functions with discontinuities. Let f(x) = e−x1x>0. Show that f̃(k) = 1−ik
1+k2

. Show that

the inverse Fourier transform of this Fourier transform f̃(k) takes the value of 1/2 at x = 0.
(This is a general property of Fourier transforms, analogously to Fourier series. Inversion for
general x is really straightforward with Complex Methods.)

9. Fourier transform of Gaussians. Find the Fourier transform of a Gaussian distribution
f(x) = e−n

2(x−µ)2 , by differentiating both sides then taking the Fourier transform of both
sides. [You may quote the result for the Fourier transform of xf(x).]

*Now attempt to calculate the Fourier transform using completing the square. Why is this
not valid (without contour integration)?

Now let µ = 0, and consider δn(x) = n√
π
f(x). Sketch δn(x) and δ̃n(k) for small and large n.

What is
´
R δn(x) dx? What is happening as n→∞?

10. Parseval’s relation continued. By considering the Fourier transform of the function f(x) =
cos(x) for |x| < π/2 and f(x) = 0 for |x| ≥ π/2, and the Fourier transform of its derivative,
show that ˆ ∞

0

π2

4 cos2 t

(π
2

4 − t2)2
dt =

ˆ ∞
0

t2 cos2 t

(π
2

4 − t2)2
dt =

π

4
.

11. Laplace’s equation. Show that the inverse Fourier transform of the function f̃α(k) = (ekα −
e−kα)1|k|≤1 is

fα(x) =
2i

π(α2 + x2)
(α coshα sinx− x cosx sinhα).

Here α is a real constant. Determine, by using Fourier transforms, the solution of Laplace’s
equation in the infinite strip 0 ≤ y ≤ 1, i.e. ∇2ψ = 0, −∞ < x < ∞, 0 < y < 1, where
ψ(x, 0) = g(x) := 2

π(1+x2)
(cosh 1 sinx− x cosx sinh 1), and ψ(x, 1) = 0 for −∞ < x <∞.
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