Lent 2022

1. A monochromatic plane wave, propagates in empty space z < 0 with fields

$$\mathbf{E}_{\text{inc}} = \mathbf{e}_x \text{Re} \left(\alpha e^{i(kz - \omega t)} \right) \qquad \mathbf{B}_{\text{inc}} = \frac{1}{c} \mathbf{e}_y \text{Re} \left(\alpha e^{i(kz - \omega t)} \right)$$

A perfect conductor fills the region $z \geq 0$. Show that if the reflected fields are given by

$$\mathbf{E}_{\text{ref}} = -\mathbf{e}_x \text{Re} \left(\alpha e^{i(-kz - \omega t)} \right) \qquad \mathbf{B}_{\text{ref}} = \frac{1}{c} \mathbf{e}_y \text{Re} \left(\alpha e^{i(-kz - \omega t)} \right)$$

then the total fields $\mathbf{E} = \mathbf{E}_{inc} + \mathbf{E}_{ref}$ and $\mathbf{B} = \mathbf{B}_{inc} + \mathbf{B}_{ref}$ satisfy the Maxwell equations and the relevant boundary conditions at z = 0.

What surface current flows in the plane z=0? Compute the Poynting vector in the region z<0 and determine its value averaged over a period $T=2\pi/\omega$.

Recall from Q5 of sheet 2 that a surface current experiences a Lorentz force from the average magnetic field on either side of the surface. Use this to show that the time-averaged force per unit area on the conductor is $\langle f \rangle = \epsilon_0 |\alpha|^2$.

- 2. Perfectly conducting plates are positioned at y=0 and y=a. Show that a monochromatic plane wave can propagate between the plates in the y direction only if the frequency is given by $\omega = n\pi c/a$ with $n \in \mathbf{Z}$.
- 3. Perfectly conducting plates are positioned at y = 0 and y = a. Show that a monochromatic wave may propagate between the plates in the direction z if the field components are

$$E_x = \omega A \sin\left(\frac{n\pi y}{a}\right) \sin(kz - \omega t)$$

and

$$B_y = kA\sin\left(\frac{n\pi y}{a}\right)\sin(kz - \omega t)$$
 $B_z = \frac{n\pi A}{a}\cos\left(\frac{n\pi y}{a}\right)\cos(kz - \omega t)$

with A a constant and $n \in \mathbf{Z}$. Show that the wavelength λ is given by $1/\lambda^2 = 1/\lambda_{\infty}^2 - n^2/4a^2$, where λ_{∞} is the wavelength of waves of the same frequency in the absence of conducting plates.

4. Consider a plane polarized electromagnetic wave described by the vector and scalar potentials $\mathbf{A}(t,\mathbf{x}) = \operatorname{Re}\left(\mathbf{A}_0 e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}\right)$ and $\Phi(t,\mathbf{x}) = \operatorname{Re}\left(\Phi_0 e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}\right)$ with constant \mathbf{A}_0 and Φ_0 . Use Maxwell's equations to find a relationship between \mathbf{A}_0 and Φ_0 .

Find a gauge transformation such that the new vector potential is "transversely polarised", i.e. $\mathbf{A}_0 \cdot \mathbf{k} = 0$. What is the scalar potential Φ in this gauge?

- 5. (a) A tensor of type (0,2) has components $T_{\mu\nu}$. View these components as a 4×4 matrix. Show that if this matrix is invertible in one inertial frame then it is invertible in any inertial frame, and that the components of the inverse matrix $(T^{-1})^{\mu\nu}$ define a tensor of type (2,0).
 - (b) Show that the object with components $\epsilon_{\mu\nu\rho\sigma}$ w.r.t. any inertial frame is an isotropic pseudo-tensor of type (0,4).

6. A particle of rest mass m and charge q moves in a constant uniform electric field $\mathbf{E} = (E, 0, 0)$. It starts from the origin with initial 3-momentum $\mathbf{p} = (0, p_0, 0)$. Show that the particle traces out a path in the (x, y) plane given by

$$x = \frac{\mathcal{E}_0}{qE} \left(\cosh\left(\frac{qEy}{p_0c}\right) - 1 \right)$$

where $\mathcal{E}_0 = \sqrt{p_0^2 c^2 + m^2 c^4}$ is the initial kinematic energy of the particle.

- 7. For constant electric and magnetic fields, **E** and **B**, show that if $\mathbf{E} \cdot \mathbf{B} = 0$ and $\mathbf{E}^2 c^2 \mathbf{B}^2 \neq 0$ then there exist inertial frames where either **E** or **B** are zero, but not both. [Hint: show that you can choose axes so that only E_y and B_z are non zero and then consider a Lorentz transformation in the x-direction.]
- 8. An electromagnetic wave is reflected by a perfect conductor at x = 0. The electric field is $\mathbf{E}(t, \mathbf{x}) = \mathbf{e}_y [f(t_-) f(t_+)]$ where f is an arbitrary function and $ct_{\pm} = ct \pm x$. Show that this satisfies the relevant boundary condition at the conductor. Find the corresponding magnetic field \mathbf{B} .

Show that under a Lorentz transformation to an inertial frame moving with speed v in the x-direction the electric field is transformed to

$$\mathbf{E}'(t', \mathbf{x}') = \mathbf{e}_y \left[\rho f(\rho t'_-) - \frac{1}{\rho} f\left(\frac{t'_+}{\rho}\right) \right] \quad \text{where} \quad \rho = \sqrt{\frac{c - v}{c + v}}$$

Hence for an incident wave $\mathbf{E}(t,\mathbf{x}) = \mathbf{e}_y F(t_-)$, find the wave that is reflected after it hits a perfectly conducting mirror moving with speed v in the x-direction.

- 9. (a) A scalar field Φ obeys the wave equation $\partial^{\mu}\partial_{\mu}\Phi = 0$. Its energy-momentum tensor is $T_{\mu\nu} = \partial_{\mu}\Phi\partial_{\nu}\Phi \frac{1}{2}\eta_{\mu\nu}\eta^{\rho\sigma}\partial_{\rho}\Phi\partial_{\sigma}\Phi$. Show that $T_{\mu\nu}$ is conserved: $\partial_{\nu}T^{\mu\nu} = 0$.
 - (b) The energy-momentum tensor of the Maxwell field is $T_{\mu\nu} = \mu_0^{-1} \left(F_{\mu\rho} F_{\nu}{}^{\rho} \frac{1}{4} \eta_{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} \right)$. Explain how T_{00} and T_{0i} are related to the energy density and Poynting vector of the electromagnetic field. Show that Maxwell's equations imply that $\partial_{\nu} T^{\mu\nu} = -F^{\mu}{}_{\nu} j^{\nu}$ and that the time component of this equation is the energy conservation equation for Maxwell's theory.
- 10. (*) For a general 4-velocity, written as $U^{\mu} = \gamma(c, \mathbf{v})$, show that

$$F^{\mu\nu}U_{\nu} = \gamma \left(\begin{array}{c} \mathbf{E} \cdot \mathbf{v}/c \\ \mathbf{E} + \mathbf{v} \times \mathbf{B} \end{array} \right)$$

In the rest-frame of a conducting medium, Ohm's law states that $\mathbf{J} = \sigma \mathbf{E}$ where σ is the conductivity and \mathbf{J} is the 3-current. Assuming that σ is a Lorentz scalar, show that Ohm's law can be written covariantly as

$$j^{\mu} + \frac{1}{c^2} (j^{\nu} U_{\nu}) U^{\mu} = \sigma F^{\mu\nu} U_{\nu}$$

where j^{μ} is the charge-current density and U^{μ} is the (uniform) 4-velocity of the medium. If the medium moves with 3-velocity \mathbf{v} in some inertial frame, show that the current in that frame is

$$\mathbf{J} = \rho \mathbf{v} + \sigma \gamma \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} - \frac{1}{c^2} (\mathbf{v} \cdot \mathbf{E}) \mathbf{v} \right)$$

where ρ is the charge density. Simplify this formula, given that the charge density vanishes in the rest-frame of the medium.